hive/spark数据倾斜解决方案

news2024/11/20 16:28:29

在这里插入图片描述

Hive数据倾斜以及解决方案

1、什么是数据倾斜

数据倾斜主要表现在,mapreduce程序执行时,reduce节点大部分执行完毕,但是有一个或者几个reduce节点运行很慢,导致整个程序的处理时间很长,这是因为某一个key的条数比其他key多很多(有时是百倍或者千倍之多),这条Key所在的reduce节点所处理的数据量比其他节点就大很多,从而导致某几个节点迟迟运行不完。
在这里插入图片描述

2、数据倾斜的原因及现象

一些操作导致的数据倾斜:
在这里插入图片描述
主要原因:

  • key分布不均匀
  • 业务数据本身的特性
  • 建表时考虑不周
  • 某些SQL语句本身就有数据倾斜

现象:
任务进度长时间维持在99%(或100%),查看任务监控页面,发现只有少量(1个或几个)reduce子任务未完成。因为其处理的数据量和其他reduce差异过大。
单一reduce的记录数与平均记录数差异过大,通常可能达到3倍甚至更多。 最长时长远大于平均时长。

3、数据倾斜的解决方案

1)参数调节

  • Map 端部分聚合,相当于Combiner
hive.map.aggr = true 
  • 有数据倾斜的时候进行负载均衡,当选项设定为true,生成的查询计划会有两个MR Job。
    第一个MR Job中,Map 的输出结果集合会随机分布到Reduce中,每个Reduce做部分聚合操作,并输出结果,这样处理
    的结果是相同的Group By Key有可能被分发到不同的Reduce中,从而达到负载均衡的目的;
    第二个MR Job再根据预处理的数据结果按照Group By Key分布到Reduce中(这个过程可以保证相同的Group By Key 被分布到同一个Reduce中),最后完成最终的聚合操作。
hive.groupby.skewindata=true

2)SQL语句调节

如何join:
关于驱动表的选取,选用join key分布最均匀的表作为驱动表,做好列裁剪和filter操作,以达到两表做
join的时候,数据量相对变小的效果。

大小表Join:
使用map join让小的维度表(1000条以下的记录条数)先进内存。在map端完成reduce。

大表Join大表:
把空值的key变成一个字符串加上随机数,把倾斜的数据分到不同的reduce上,由于null值关联不上,处理后并不影响最终结果。

count distinct大量相同特殊值:
count distinct时,将值为空的情况单独处理,如果是计算count distinct,可以不用处理,直接过滤,在
最后结果中加1。如果还有其他计算,需要进行group by,可以先将值为空的记录单独处理,再和其他计
算结果进行union。

group by维度过小:
采用sum() group by的方式来替换count(distinct)完成计算。

特殊情况特殊处理:
在业务逻辑优化效果的不大情况下,有些时候是可以将倾斜的数据单独拿出来处理。最后union回去。

4、典型的业务场景

1)空值产生的数据倾斜

场景:如日志中,常会有信息丢失的问题,比如日志中的 user_id,如果取其中的 user_id 和 用户表中的
user_id 关联,会碰到数据倾斜的问题。

解决方法一:user_id为空的不参与关联

select * from log a
join users b
on a.user_id is not null
and a.user_id = b.user_id
union all
select * from log a
where a.user_id is null;

解决方法二:赋与空值分新的key值

select *
from log a
left outer join users b
on case when a.user_id is null then concat('hive',rand() ) else a.user_id end =
b.user_id;

结论:
方法二比方法1、一效率更好,不但io少了,而且作业数也少了。
解决方法一中log读取两次,jobs是2。
解决方法二job数是1。
这个优化适合无效id (比如 -99 , ‘’, null 等) 产生的倾斜问题。把空值的key变成一个字符串加上随机数,就能把倾斜的数据分到不同的reduce上,解决数据倾斜问题。

2)不同数据类型关联产生数据倾斜

场景:用户表中user_id字段为int,log表中user_id字段既有string类型也有int类型。
当按照user_id进行两个表的Join操作时,默认的Hash操作会按int型的id来进行分配,这样会导致所有string类型id的记录都分
配到一个Reducer中。

解决方法:把数字类型转换成字符串类型

select * from users a
left outer join logs b
on a.usr_id = cast(b.user_id as string);

3)小表不小不大,怎么用 map join 解决倾斜问题

使用map join解决小表(记录数少)关联大表的数据倾斜问题,这个方法使用的频率非常高,但如果小表很大,大到map join会出现bug或异常,这时就需要特别的处理。
例子:

select * from log a
left outer join users b
on a.user_id = b.user_id;

users表有600w+的记录,把users分发到所有的map上也是个不小的开销,而且map join不支持这么大的小表。如果用普通的join,又会碰到数据倾斜的问题

解决方法:

select /*+mapjoin(x)*/* from log a
left outer join (
select /*+mapjoin(c)*/d.*
from ( select distinct user_id from log ) c
join users d
on c.user_id = d.user_id
) x
on a.user_id = b.user_id;

假如,log里user_id有上百万个,这就又回到原来map join问题。所幸,每日的会员uv不会太多,有交易
的会员不会太多,有点击的会员不会太多,有佣金的会员不会太多等等。所以这个方法能解决很多场景
下的数据倾斜问题。

Hive如果不用参数调优,在map和reduce端应该做什么

1、map阶段优化

Map阶段的优化,主要是确定合适的map数。那么首先要了解map数的计算公式

num_reduce_tasks = min[${hive.exec.reducers.max},(${input.size}/${hive.exec.reducers.bytes.per.reducer})]
  • mapred.min.split.size: 指的是数据的最小分割单元大小;min的默认值是1B
  • mapred.max.split.size: 指的是数据的最大分割单元大小;max的默认值是256MB
  • dfs.block.size: 指的是HDFS设置的数据块大小。个已经指定好的值,而且这个参数默认情况下hive是识别不到的。

通过调整max可以起到调整map数的作用,减小max可以增加map数,增大max可以减少map数。需要提醒的是,直接调整mapred.map.tasks这个参数是没有效果的。

2、reduce阶段优化

这里说的reduce阶段,是指前面流程图中的reduce phase(实际的reduce计算)而非图中整个reduce
task。Reduce阶段优化的主要工作也是选择合适的reduce task数量, 与map优化不同的是,reduce优化时,可以直接设置mapred.reduce.tasks参数从而直接指定reduce的个数。

num_reduce_tasks = min[${hive.exec.reducers.max},(${input.size}/${hive.exec.reducers.bytes.per.reducer})]

hive.exec.reducers.max :此参数从Hive 0.2.0开始引入。在Hive 0.14.0版本之前默认值是999;而从
Hive 0.14.0开始,默认值变成了1009,这个参数的含义是最多启动的Reduce个数

hive.exec.reducers.bytes.per.reducer :此参数从Hive 0.2.0开始引入。在Hive 0.14.0版本之前默
认值是1G(1,000,000,000);而从Hive 0.14.0开始,默认值变成了256M(256,000,000),可以参见HIVE-7158和
HIVE-7917。这个参数的含义是每个Reduce处理的字节数。比如输入文件的大小是1GB,那么会启动4个Reduce来处理数据。

也就是说,根据输入的数据量大小来决定Reduce的个数,默认Hive.exec.Reducers.bytes.per.Reducer为1G,而且Reduce个数不能超过一个上限参数值,这个参数的默认取值为999。所以我们可以调整Hive.exec.Reducers.bytes.per.Reducer来设置Reduce个数。

注意:
Reduce的个数对整个作业的运行性能有很大影响。
如果Reduce设置的过大,那么将会产生很多小文件,对NameNode会产生一定的影响,而且整个作业的运行时间未必会减少;
如果Reduce设置的过小,那么单个Reduce处理的数据将会加大,很可能会引起OOM异常。

如果设置了 mapred.reduce.tasks/mapreduce.job.reduces 参数,那么Hive会直接使用它的值作为Reduce的个数;
如果mapred.reduce.tasks/mapreduce.job.reduces的值没有设置(也就是-1),那么Hive会根据输入文件的大小估算出Reduce的个数。
根据输入文件估算Reduce的个数可能未必很准确,因为Reduce的输入是Map的输出,而Map的输出可能会比输入要小,所以最准确的数根据Map的输出估算Reduce的个数。

Spark数据倾斜问题,如何定位,解决方案

在这里插入图片描述

1、数据倾斜

Spark中的数据倾斜问题主要指shuffle过程中出现的数据倾斜问题,是由于不同的key对应的数据量不同
导致的不同task所处理的数据量不同的问题。
例如,reduce点一共要处理100万条数据,第一个和第二个task分别被分配到了1万条数据,计算5分钟内完成,第三个task分配到了98万数据,此时第三个task可能需要10个小时完成,这使得整个Spark作业需要10个小时才能运行完成,这就是数据倾斜所带来的后果

数据倾斜俩大直接致命后果
1)数据倾斜直接会导致一种情况:Out Of Memory
2)运行速度慢
注意,要区分开数据倾斜与数据量过量这两种情况
数据倾斜是指少数task被分配了绝大多数的数据,因此少数task运行缓慢;
数据过量是指所有task被分配的数据量都很大,相差不多,所有task都运行缓慢

数据倾斜的表现:
1)Spark作业的大部分task都执行迅速,只有有限的几个task执行的非常慢,此时可能出现了数据倾斜,作业可以运行,但是运行得非常慢,严重影响出数时间
2)Spark作业的大部分task都执行迅速,但是有的task在运行过程中会突然报出OOM,反复执行几次都在某一个task报出OOM错误,此时可能出现了数据倾斜,作业无法正常运行

定位数据倾斜问题:
1)查阅代码中的shuffe算子,例如reduceByKey、countByKey、groupByKey、join等算子,根据代码逻辑判断此处是否会出现数据倾斜
2)查看Spark作业的log文件,log文件对于错误的记录会精确到代码的某一行,可以根据异常定位到的代码位置来明确错误发生在第几个stage,对应的shuffle算子是哪一个

2、解决方案一:聚合元数据

1)避免shuffle过程

绝大多数情况下,Spark作业的数据来源都是Hive表,这些Hive表基本都是经过ETL之后的昨天的数据为了避免数据倾斜,我们可以考虑避免shuffle过程,如果避免了shuffle过程,那么从根本上就消除了发生数据倾斜问题的可能

如果Spark作业的数据来源于Hive表,那么可以先在Hive表中对数据进行聚合,例如按照key进行分组,将同一key对应的所有value用一种特殊的格式拼接到一个字符串里去,这样,一个key就只有一条数据了;
之后,对一个key的所有value进行处理时,只需要进行map操作即可,无需再进行任何的shuffle操作。

通过上述方式就避免了执行shuffle操作,也就不可能会发生任何的数据倾斜问题。

对于Hive表中数据的操作,不一定是拼接成一个字符串,也可以是直接对key的每一条数据进行累计计算要区分开,处理的数据量大和数据倾斜的区别

2)缩小key粒度(增大数据倾斜可能性,降低每个task的数据量)

key的数量增加,可能使数据倾斜更严重

3)增大key粒度(减小数据倾斜可能性,增大每个task的数据量)

如果没有办法对每个key聚合出来一条数据,在特定场景下,可以考虑扩大key的聚合粒度

例如,目前有10万条用户数据,当前key的粒度是(省,城市,区,日期),现在我们考虑扩大粒度,将key的粒度扩大为(省,城市,日期),这样的话,key的数量会减少,key之间的数据量差异也有可能会减少,由此可以减轻数据倾斜的现象和问题。(此方法只针对特定类型的数据有效,当应用场景不适宜时,会加重数据倾斜)

3、解决方案二:过滤导致倾斜的key

如果在Spark作业中允许丢弃某些数据,那么可以考虑将可能导致数据倾斜的key进行过滤,滤除可能导致数据倾斜的key对应的数据,这样,在Spark作业中就不会发生数据倾斜了

4、解决方案三:提高shuffle操作中的reduce并行度

当方案一和方案二对于数据倾斜的处理没有很好的效果时,可以考虑提高shuffle过程中的reduce端并行度,reduce端并行度的提高就增加了reduce端task的数量,那么每个task分配到的数据量就会相应减少,由此缓解数据倾斜问题

1)reduce端并行度的设置

在大部分的shuffle算子中,都可以传入一个并行度的设置参数,比如reduceByKey(500),这个参数会决定shuffle过程中reduce端的并行度,在进行shuffle操作的时候,就会对应着创建指定数量的reduce task。对于Spark SQL中的shuffle类语句,比如group by、join等,需要设置一个参数,即spark.sql.shuffle.partitions,该参数代表了shuffle read task的并行度,该值默认是200,对于很多场景来说都有点过小

增加shuffle read task的数量,可以让原本分配给一个task的多个key分配给多个task,从而让每个task处理比原来更少的数据。
举例来说,如果原本有5个key,每个key对应10条数据,这5个key都是分配给一个task的,那么这个task就要处理50条数据。
而增加了shuffle read task以后,每个task就分配到一个key,即每个task就处理10条数据,那么自然每个task的执行时间都会变短了

2)reduce端并行度设置存在的缺陷

提高reduce端并行度并没有从根本上改变数据倾斜的本质和问题(方案一和方案二从根本上避免了数据倾斜的发生),只是尽可能地去缓解和减轻shuffle reduce task的数据压力,以及数据倾斜的问题,适用于有较多key对应的数据量都比较大的情况
该方案通常无法彻底解决数据倾斜,因为如果出现一些极端情况,比如某个key对应的数据量有100万,那么无论你的task数量增加到多少,这个对应着100万数据的key肯定还是会分配到一个task中去处理,因此注定还是会发生数据倾斜的。
所以这种方案只能说是在发现数据倾斜时尝试使用的第一种手段,尝试去用最简单的方法缓解数据倾斜而已,或者是和其他方案结合起来使用
在理想情况下,reduce端并行度提升后,会在一定程度上减轻数据倾斜的问题,甚至基本消除数据倾斜;
但是,在一些情况下,只会让原来由于数据倾斜而运行缓慢的task运行速度稍有提升,或者避免了某些task的OOM问题,但是,仍然运行缓慢,此时,要及时放弃方案三,开始尝试后面的方案

5、解决方案四:使用随机key实现双重聚合

当使用了类似于groupByKey、reduceByKey这样的算子时,可以考虑使用随机key实现双重聚合,如下图所示
在这里插入图片描述
首先,通过map算子给每个数据的key添加随机数前缀,对key进行打散,将原先一样的key变成不一样的key;
然后进行第一次聚合,这样就可以让原本被一个task处理的数据分散到多个task上去做局部聚合;
随后,去除掉每个key的前缀,再次进行聚合此方法对于由groupByKey、reduceByKey这类算子造成的数据倾斜由比较好的效果,仅仅适用于聚合类的shuffle操作,适用范围相对较窄。如果是join类的shuffle操作,还得用其他的解决方案。

此方法也是前几种方案没有比较好的效果时要尝试的解决方案

6、解决方案五:将reduce join转换为map join

正常情况下,join操作都会执行shuffle过程,并且执行的是reduce join,也就是先将所有相同的key和对应的value汇聚到一个reduce task中,然后再进行join。普通join的过程如下图所示
在这里插入图片描述

普通的join是会走shuffle过程的,而一旦shuffle,就相当于会将相同key的数据拉取到一个shuffle read task中再进行join,此时就是reduce join。但是如果一个RDD是比较小的,则可以采用广播小RDD全量数据+map算子来实现与join同样的效果,也就是map join,此时就不会发生shuffle操作,也就不会发生数据倾斜

注意,RDD是并不能进行广播的,只能将RDD内部的数据通过collect拉取到Driver内存然后再进行广播

1)核心思路

不使用join算子进行连接操作,而使用Broadcast变量与map类算子实现join操作,进而完全规避掉shuffle类的操作,彻底避免数据倾斜的发生和出现。

将较小RDD中的数据直接通过collect算子拉取到Driver端的内存中来,然后对其创建一个Broadcast变量;
接着对另外一个RDD执行map类算子,在算子函数内,从Broadcast变量中获取较小RDD的全量数据,与当前RDD的每一条数据按照连接key进行比对,如果连接key相同的话,那么就将两个RDD的数据用你需要的方式连接起来
根据上述思路,根本不会发生shuffle操作,从根本上杜绝了join操作可能导致的数据倾斜问题。

当join操作有数据倾斜问题并且其中一个RDD的数据量较小时,可以优先考虑这种方式,效果非常好。
map join的过程如下图所示
在这里插入图片描述

2)不使用场景分析

由于Spark的广播变量是在每个Executor中保存一个副本,如果两个RDD数据量都比较大,那么如果将一个数据量比较大的RDD做成广播变量,那么很有可能会造成内存溢出

7、解决方案六:sample采样对倾斜key单独进行join

在Spark中,如果某个RDD只有一个key,那么在shuffle过程中会默认将此key对应的数据打散,由不同的
reduce端task进行处理

当由单个key导致数据倾斜时,可有将发生数据倾斜的key单独提取出来,组成一个RDD,然后用这个原本会导致倾斜的key组成的RDD根其他RDD单独join,此时,根据Spark的运行机制,此RDD中的数据会在shuffle阶段被分散到多个task中去进行join操作。倾斜key单独join的流程如下图所示
在这里插入图片描述
1)适用场景分析
对于RDD中的数据,可以将其转换为一个中间表,或者是直接使用countByKey()的方式,看一个这个RDD中各个key对应的数据量,此时如果你发现整个RDD就一个key的数据量特别多,那么就可以考虑使用这种方法

当数据量非常大时,可以考虑使用sample采样获取10%的数据,然后分析这10%的数据中哪个key可能会导致数据倾斜,然后将这个key对应的数据单独提取出来

Map Join能解决数据倾斜的原因

Map Join概念:将其中做连接的小表(全量数据)分发到所有 MapTask 端进行 Join,从而避免了reduceTask,前提要求是内存足以装下该全量数据。

Map Join通常用于一个很小的表和一个大表进行join的场景,具体小表有多小,由参数hive.mapjoin.smalltable.filesize来决定,该参数表示小表的总大小,默认值为25000000字节,即25M。 一般默认就够了,无须修改。

1)在多表关联情况下,将小表(关联键记录少的表)依次放到前面,这样能够触发reduce端减少操作次数,从而减少运行时间。

2)同时使用Map Join让小表缓存到内存。在map端完成join过程,这样就能省掉redcue端的工作。

需要注意:这一功能使用时,需要开启map-side join的设置属性:

set hive.auto.convert.join=true(默认是false)

注意: 大表放硬盘,小表放内存( 前提要求是内存足以装下该全量数据 )。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/669409.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

stm32驱动RFID高频读卡器读取IC卡

stm32驱动RFID读卡器读取IC卡 1.介绍RFID2.RFID控制指令2.1 读IC卡号2.2 读IC卡数据块2.3 写数据到IC卡数据块2.4 读取RFID读卡器用户数据2.5 向RFID读卡器写入用户数据 3.代码实例3.1 rfid.c 源文件3.2 rfid 头文件 4. 结语 1.介绍RFID RFID(Radio-Frequency Iden…

篮球比赛管理系统的设计与实现(论文+源码)_kaic

摘要 迅猛发展并日益成熟的网络已经彻底的影响了我们的方方面面。人们也确实真切的体会到了网络带给我们的便捷。本网站的设计理念在于作为一个天津大学生台球联盟推广网,就是能够尽可能详细地展示、介绍台球联盟资讯信息,播放视频,同时为广…

关于Eclipse代码断点调试与相关快捷键

关于Eclipse代码断点调试与相关快捷键 功能快捷键 首先关于DeBug测试的快捷键: Debug F5:Step Into(debug) F6:Step over(debug) F7:Step return(debug) F8&a…

化妆品行业知识分享

目录 一、产品基本信息 1.产品的组成 2. 产品分类 3.常见术语 二、产品特性 1.生产特性 2.销售特性 3.采购特性 4.研发特性 三、行业痛点与解决方案 1.行业主要存在的痛点 2.日常业务解决方案: 3.供应商管理解决方案: 四、总结 一、产品基本信息 1.产品的…

C++基础(13)——STL(stack、queue、list)

前言 本文主要介绍C中STL中的stack、queue和list容器 7.5:stack容器 7.5.1:stack容器基本概念 栈中只有顶端元素才可以被外界调用,因此栈不允许有遍历的行为,其中string、vector、deque都可以遍历 7.5.2:栈的常用接…

AT32F437网络通信

网络时间长了ping不通,解决方法 https :// https://hjha.bar:8443/vod 123456789 /play/id/32052/sid/1/nid/1.html

PYTHON强制升级openpyxl方法--已验证有效

当执行for i, row in enumerate(worksheet.iter_rows(min_row1, max_rowworksheet.max_row,values_onlyTrue)) 出现以下错误时:TypeError: iter_rows() got an unexpected keyword argument ‘values_only’ 说明openpyxl版本过低,需要升级,当…

指令模板:采访大纲生成 | AIGC实践

最近收获了一些朋友的谬赞,说我“执行力太强了”,可以持续输出内容。 呃,其实吧,这些素材都是从我的实际工作和生活中来的,只是稍加整理而已。 要说起来,AIGC的出现已经完全改变了我的工作方式。在遇到问题…

《中国多媒体与网络教学学报》简介及投稿邮箱

《中国多媒体与网络教学学报》简介及投稿邮箱 中国多媒体与网络教学学报 创刊于2002年,是经国家新闻出版总署批准的中央级电子期刊,是国内最早以多媒体形式发表中小学信息化教学改革前沿成果的学术期刊群,是教育部重点成果的发表平台之一,由教育部主管、清华大学主…

谈找工作线上途径

谈找工作 目录概述需求: 设计思路实现思路分析1.51job2.拉勾网 猎聘网站智联招聘网站后记 参考资料和推荐阅读 Survive by day and develop by night. talk for import biz , show your perfect code,full busy,skip hardness,make a better result,wait…

DDOS攻击防御实战(威胁情报)

背景: 不知道大家最近有没有关注到,百度云CDN不支持免费了,网站安全问题越来越严重了…… 常见攻击 DDOS Distributed Denial of Service 分布式拒绝服务攻击可以使很多的计算机在同一时间遭受到攻击,使攻击的目标无法正常使用&…

C++基础(14)——STL(set、pair、map)

前言 本文主要介绍C中STL中的set、pair和map容器 7.8:set、multiset容器 7.8.1:set容器基本概念、构造函数和赋值(、insert) set容器中所有元素都会在插入的时候自动排序 set和multiset的区别 set不允许有重复的元素&#xff…

i5/i7该选谁?差距大不大?i5-13490F、i7-13790F深度测试

一、i5、i7还是性能差不多吗? 自从2017年Zen架构发布开始,Intel与AMD在CPU性能竞争上就进入了激烈的内卷。随着双方在产品竞争上日趋白热化,同世代不同档次CPU产品的性能差距被明显拉大。 那么,过去那种“i5、i7性能差不多&#x…

self-attention(transformer)

自注意力机制 在传统的CNN中,都是对感受野内部的事情进行关联后理解。 感受野实际上关乎了模型对全局信息的理解。 而本质上,感受野是一种特殊的注意力机制,也就是说感受野是一种受限的、具有特定参数的注意力。 之前的内容如DANet&#…

基于webpack开发vue-cli

一、vue-cli开发 1. 项目整体目录 2. package.json {"name": "vue-cli","version": "1.0.0","description": "","main": "index.js","scripts": {"start": "npm …

机器学习常识 23: U-Net

摘要: U-Net 集编码-解码于一体, 是一种常见的网络架构. 图 1. U-Net 例. 如图 1 所示, U-Net 就是 U 形状的网络, 前半部分 (左边) 进行编码, 后半部分 (右边) 进行解码. 编码部分, 将一个图像经过特征提取, 变成一个向量. 前面说过: 深度学习本质上只做件事情, 就是特征提取…

【ESXi 7.x/8.x】ESXi 配置备份与还原

目录 1. 使用 ESXi命令行备份数据(1)将已更改的配置与持久存储同步(2)备份 ESXi 主机的配置数据(3)下载配置文件通过浏览器下载配置文件通过wget命令下载 (4)注意事项 2. 还原 ESXi …

基于Java班主任助理系统设计实现(源码+lw+部署文档+讲解等)

博主介绍: ✌全网粉丝30W,csdn特邀作者、博客专家、CSDN新星计划导师、java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战 ✌ 🍅 文末获取源码联系 🍅 👇🏻 精…

一直报错npm ERR! cb() never called!删除缓存仍然不行

看到npm下载包出错, 通常我们会手动删除node-modules这个文件夹来解决. 但是往往现实很骨感, 然后我们会找网上各种方法来解决, 比如这篇文章 但是当所有方法都尝试了一遍, 仍然还是出错, 这到底是什么原因呢? 可以使用npm config ls 查看一下我们电脑上是否会有一份.npmrc…

前端Vue自定义顶部搜索框 热门搜索 历史搜索 用于搜索跳转使用

前端Vue自定义顶部搜索框 热门搜索 历史搜索 用于搜索跳转使用&#xff0c; 下载完整代码请访问uni-app插件市场地址&#xff1a;https://ext.dcloud.net.cn/plugin?id13128 效果图如下&#xff1a; #### 自定义顶部搜索框 用于搜索跳转使用方法 使用方法 <!-- 自定义顶…