OpenGL之鼠标拾取和模型控制

news2025/1/12 3:02:31

文章目录

  • 鼠标拾取
    • 转化步骤
      • 步骤 0:2D 视口坐标
      • 步骤 1:3D 规范化设备坐标
      • 步骤2:4d 均匀剪辑坐标
      • 步骤3:4D 眼(相机)坐标
      • 步骤4:4d 世界坐标
    • 源码
  • 模型控制
    • 源码

鼠标拾取

转化步骤

 使用鼠标单击或“选择”场景中的 3D 对象可能很有用 光标。一种方法是从鼠标投射 3D 射线, 通过摄像机,进入场景,然后检查该光线是否与任何对象。这通常称为光线投射。
在这里插入图片描述

步骤 0:2D 视口坐标

 范围 [0:宽度、高度:0]
 我们从鼠标光标坐标开始。这些是 2d,并且在视口坐标系中。首先我们需要获取鼠标 x,y 像素 坐标。您可能已经设置了一个回调函数(例如 GLFW 或 GLUT) 像这样:

void mouse_click_callback(int b, int s, int mouse_x, int mouse_y);

 这给了我们一个 x 在 0:width 和 y 从高度:0 开始。请记住,0 位于此处的屏幕顶部,因此 y 轴方向与其他坐标系中的方向相反。

步骤 1:3D 规范化设备坐标

范围 [-1:1, -1:1, -1:1]
下一步是将其转换为 3D 规范化设备坐标。 这应该在 x [-1:1] y [-1:1] 和 z [-1:1] 的范围内。我们有一个 x 和 y已经,所以我们缩放它们的范围,并反转y的方向。

float x = (2.0f * mouse_x) / width - 1.0f;
float y = 1.0f - (2.0f * mouse_y) / height;
float z = 1.0f;
vec3 ray_nds = vec3(x, y, z);

我们实际上还不需要指定一个 z,但我放了一个(对于 craic)。

步骤2:4d 均匀剪辑坐标

范围 [-1:1, -1:1, -1:1, -1:1]
 我们希望我们的射线的z指向前方 - 这通常是 OpenGL 样式中的负 z 方向。我们可以添加一个 ,这样我们就有一个 4d 向量。w

vec4 ray_clip = vec4(ray_nds.xy, -1.0, 1.0);

注意:我们不需要在这里反转透视划分,因为 这是一条没有内在深度的射线。有关光线投射的其他教程 会错误地告诉您这样做。不要理会假先知!我们会做的 仅在点的特殊情况下,对于某些特殊效果。

步骤3:4D 眼(相机)坐标

范围 [-x:x, -y:y, -z:z, -w:w]

 通常,为了从眼睛空间进入剪辑空间,我们将向量乘以 投影矩阵。我们可以通过乘以这个的倒数来倒退矩阵。

vec4 ray_eye = inverse(projection_matrix) * ray_clip;

 现在,我们只需要取消投影零件,所以让我们手动设置 表示“前进,而不是点”的部分。x,yz,w

ray_eye = vec4(ray_eye.xy, -1.0, 0.0);

步骤4:4d 世界坐标

范围 [-x:x, -y:y, -z:z, -w:w]

同样,回到转换管道中的另一个步骤。记得 我们手动为 z 分量指定了 -1,这意味着我们的光线 未规范化。我们应该在使用它之前这样做。

vec3 ray_wor = (inverse(view_matrix) * ray_eye).xyz;
// don't forget to normalise the vector at some point
ray_wor = normalise(ray_wor);

这应该平衡上下、左右和前进的组件 安全信息因此,假设我们的相机直接沿着-Z世界轴看,我们 当鼠标位于 屏幕,以及鼠标在屏幕上移动时不太重要的 z 值。 这将取决于纵横比,以及视图中定义的视野和投影矩阵。

源码

main.cpp

#include <glad/glad.h> 
#include <GLFW/glfw3.h>
#include <iostream>
#include <cmath> 
#include "../shader.h"
#include "../camera.h"
#include <glm/glm.hpp> 
#include <glm/gtc/matrix_transform.hpp> 
#include <glm/gtc/type_ptr.hpp>
#include "../model.h"


void framebuffer_size_callback(GLFWwindow* window, int width, int height);
void mouse_callback(GLFWwindow* window, double xpos, double ypos);
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset);
void processInput(GLFWwindow* window);
unsigned int loadTexture(const char* path);
void mouseClick_callback(GLFWwindow* window, int button, int action, int mods);

// settings
const unsigned int SCR_WIDTH = 800;
const unsigned int SCR_HEIGHT = 600;
float _near = 0.1, _far = 100;

// camera
Camera camera(glm::vec3(0.0f, 0.0f, 3.0f));
float lastX = (float)SCR_WIDTH / 2.0;
float lastY = (float)SCR_HEIGHT / 2.0;
bool firstMouse = true;

// timing
float deltaTime = 0.0f;
float lastFrame = 0.0f;

glm::mat4 view;
glm::mat4 projection;

int main()
{
    // glfw: initialize and configure
    // ------------------------------
    glfwInit();
    glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
    glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
    glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);

#ifdef __APPLE__
    glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE);
#endif

    // glfw window creation
    // --------------------
    GLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "LearnOpenGL", NULL, NULL);
    if (window == NULL)
    {
        std::cout << "Failed to create GLFW window" << std::endl;
        glfwTerminate();
        return -1;
    }
    glfwMakeContextCurrent(window);
    glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);
    glfwSetCursorPosCallback(window, mouse_callback);
    glfwSetScrollCallback(window, scroll_callback);
    glfwSetMouseButtonCallback(window, mouseClick_callback);

    // tell GLFW to capture our mouse
    //glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);

    // glad: load all OpenGL function pointers
    // ---------------------------------------
    if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress))
    {
        std::cout << "Failed to initialize GLAD" << std::endl;
        return -1;
    }

    // configure global opengl state
    // -----------------------------
    glEnable(GL_DEPTH_TEST);
    glDepthFunc(GL_LESS); // always pass the depth test (same effect as glDisable(GL_DEPTH_TEST))

    // build and compile shaders
    // -------------------------
    Shader shader("shaders/shader.vs", "shaders/shader.fs");

    // set up vertex data (and buffer(s)) and configure vertex attributes
    // ------------------------------------------------------------------
    float cubeVertices[] = {
        // positions          // texture Coords
        -0.5f, -0.5f, -0.5f,  0.0f, 0.0f,
         0.5f, -0.5f, -0.5f,  1.0f, 0.0f,
         0.5f,  0.5f, -0.5f,  1.0f, 1.0f,
         0.5f,  0.5f, -0.5f,  1.0f, 1.0f,
        -0.5f,  0.5f, -0.5f,  0.0f, 1.0f,
        -0.5f, -0.5f, -0.5f,  0.0f, 0.0f,

        -0.5f, -0.5f,  0.5f,  0.0f, 0.0f,
         0.5f, -0.5f,  0.5f,  1.0f, 0.0f,
         0.5f,  0.5f,  0.5f,  1.0f, 1.0f,
         0.5f,  0.5f,  0.5f,  1.0f, 1.0f,
        -0.5f,  0.5f,  0.5f,  0.0f, 1.0f,
        -0.5f, -0.5f,  0.5f,  0.0f, 0.0f,

        -0.5f,  0.5f,  0.5f,  1.0f, 0.0f,
        -0.5f,  0.5f, -0.5f,  1.0f, 1.0f,
        -0.5f, -0.5f, -0.5f,  0.0f, 1.0f,
        -0.5f, -0.5f, -0.5f,  0.0f, 1.0f,
        -0.5f, -0.5f,  0.5f,  0.0f, 0.0f,
        -0.5f,  0.5f,  0.5f,  1.0f, 0.0f,

         0.5f,  0.5f,  0.5f,  1.0f, 0.0f,
         0.5f,  0.5f, -0.5f,  1.0f, 1.0f,
         0.5f, -0.5f, -0.5f,  0.0f, 1.0f,
         0.5f, -0.5f, -0.5f,  0.0f, 1.0f,
         0.5f, -0.5f,  0.5f,  0.0f, 0.0f,
         0.5f,  0.5f,  0.5f,  1.0f, 0.0f,

        -0.5f, -0.5f, -0.5f,  0.0f, 1.0f,
         0.5f, -0.5f, -0.5f,  1.0f, 1.0f,
         0.5f, -0.5f,  0.5f,  1.0f, 0.0f,
         0.5f, -0.5f,  0.5f,  1.0f, 0.0f,
        -0.5f, -0.5f,  0.5f,  0.0f, 0.0f,
        -0.5f, -0.5f, -0.5f,  0.0f, 1.0f,

        -0.5f,  0.5f, -0.5f,  0.0f, 1.0f,
         0.5f,  0.5f, -0.5f,  1.0f, 1.0f,
         0.5f,  0.5f,  0.5f,  1.0f, 0.0f,
         0.5f,  0.5f,  0.5f,  1.0f, 0.0f,
        -0.5f,  0.5f,  0.5f,  0.0f, 0.0f,
        -0.5f,  0.5f, -0.5f,  0.0f, 1.0f
    };
    float planeVertices[] = {
        // positions          // texture Coords (note we set these higher than 1 (together with GL_REPEAT as texture wrapping mode). this will cause the floor texture to repeat)
         5.0f, -0.5f,  5.0f,  2.0f, 0.0f,
        -5.0f, -0.5f,  5.0f,  0.0f, 0.0f,
        -5.0f, -0.5f, -5.0f,  0.0f, 2.0f,

         5.0f, -0.5f,  5.0f,  2.0f, 0.0f,
        -5.0f, -0.5f, -5.0f,  0.0f, 2.0f,
         5.0f, -0.5f, -5.0f,  2.0f, 2.0f
    };
    // cube VAO
    unsigned int cubeVAO, cubeVBO;
    glGenVertexArrays(1, &cubeVAO);
    glGenBuffers(1, &cubeVBO);
    glBindVertexArray(cubeVAO);
    glBindBuffer(GL_ARRAY_BUFFER, cubeVBO);
    glBufferData(GL_ARRAY_BUFFER, sizeof(cubeVertices), &cubeVertices, GL_STATIC_DRAW);
    glEnableVertexAttribArray(0);
    glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 5 * sizeof(float), (void*)0);
    glEnableVertexAttribArray(1);
    glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 5 * sizeof(float), (void*)(3 * sizeof(float)));
    glBindVertexArray(0);
    // plane VAO
    unsigned int planeVAO, planeVBO;
    glGenVertexArrays(1, &planeVAO);
    glGenBuffers(1, &planeVBO);
    glBindVertexArray(planeVAO);
    glBindBuffer(GL_ARRAY_BUFFER, planeVBO);
    glBufferData(GL_ARRAY_BUFFER, sizeof(planeVertices), &planeVertices, GL_STATIC_DRAW);
    glEnableVertexAttribArray(0);
    glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 5 * sizeof(float), (void*)0);
    glEnableVertexAttribArray(1);
    glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 5 * sizeof(float), (void*)(3 * sizeof(float)));
    glBindVertexArray(0);

    // load textures
    // -------------
    unsigned int cubeTexture = loadTexture("../resources/container2.png");
    unsigned int floorTexture = loadTexture("../resources/rock.jpg");

    // shader configuration
    // --------------------
    shader.use();
    shader.setInt("texture1", 0);

    // render loop
    // -----------
    while (!glfwWindowShouldClose(window))
    {
        // per-frame time logic
        // --------------------
        float currentFrame = static_cast<float>(glfwGetTime());
        deltaTime = currentFrame - lastFrame;
        lastFrame = currentFrame;

        // input
        // -----
        processInput(window);

        // render
        // ------
        glClearColor(0.1f, 0.1f, 0.1f, 1.0f);
        glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

        shader.use();
        glm::mat4 model = glm::mat4(1.0f);
        view = camera.GetViewMatrix();
        projection = glm::perspective(glm::radians(camera.Zoom), (float)SCR_WIDTH / (float)SCR_HEIGHT, 0.1f, 100.0f);
        shader.setMat4("view", view);
        shader.setMat4("projection", projection);
        // cubes
        glBindVertexArray(cubeVAO);
        glActiveTexture(GL_TEXTURE0);
        glBindTexture(GL_TEXTURE_2D, cubeTexture);
        shader.setMat4("model", model);
        glDrawArrays(GL_TRIANGLES, 0, 36);

        // floor
        glBindVertexArray(planeVAO);
        glBindTexture(GL_TEXTURE_2D, floorTexture);
        shader.setMat4("model", glm::mat4(1.0f));
        glDrawArrays(GL_TRIANGLES, 0, 6);
        glBindVertexArray(0);

        // glfw: swap buffers and poll IO events (keys pressed/released, mouse moved etc.)
        // -------------------------------------------------------------------------------
        glfwSwapBuffers(window);
        glfwPollEvents();
    }

    // optional: de-allocate all resources once they've outlived their purpose:
    // ------------------------------------------------------------------------
    glDeleteVertexArrays(1, &cubeVAO);
    glDeleteVertexArrays(1, &planeVAO);
    glDeleteBuffers(1, &cubeVBO);
    glDeleteBuffers(1, &planeVBO);

    glfwTerminate();
    return 0;
}

// process all input: query GLFW whether relevant keys are pressed/released this frame and react accordingly
// ---------------------------------------------------------------------------------------------------------
void processInput(GLFWwindow* window)
{
    if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
        glfwSetWindowShouldClose(window, true);

    if (glfwGetKey(window, GLFW_KEY_W) == GLFW_PRESS)
        camera.ProcessKeyboard(FORWARD, deltaTime);
    if (glfwGetKey(window, GLFW_KEY_S) == GLFW_PRESS)
        camera.ProcessKeyboard(BACKWARD, deltaTime);
    if (glfwGetKey(window, GLFW_KEY_A) == GLFW_PRESS)
        camera.ProcessKeyboard(LEFT, deltaTime);
    if (glfwGetKey(window, GLFW_KEY_D) == GLFW_PRESS)
        camera.ProcessKeyboard(RIGHT, deltaTime);
}

// glfw: whenever the window size changed (by OS or user resize) this callback function executes
// ---------------------------------------------------------------------------------------------
void framebuffer_size_callback(GLFWwindow* window, int width, int height)
{
    // make sure the viewport matches the new window dimensions; note that width and 
    // height will be significantly larger than specified on retina displays.
    glViewport(0, 0, width, height);
}

// glfw: whenever the mouse moves, this callback is called
// -------------------------------------------------------
void mouse_callback(GLFWwindow* window, double xposIn, double yposIn)
{
    float xpos = static_cast<float>(xposIn);
    float ypos = static_cast<float>(yposIn);

    if (firstMouse)
    {
        lastX = xpos;
        lastY = ypos;
        firstMouse = false;
    }

    float xoffset = xpos - lastX;
    float yoffset = lastY - ypos; // reversed since y-coordinates go from bottom to top

    lastX = xpos;
    lastY = ypos;

    camera.ProcessMouseMovement(xoffset, yoffset);
}

// glfw: whenever the mouse scroll wheel scrolls, this callback is called
// ----------------------------------------------------------------------
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset)
{
    camera.ProcessMouseScroll(static_cast<float>(yoffset));
}

// utility function for loading a 2D texture from file
// ---------------------------------------------------
unsigned int loadTexture(char const* path)
{
    unsigned int textureID;
    glGenTextures(1, &textureID);

    int width, height, nrComponents;
    unsigned char* data = stbi_load(path, &width, &height, &nrComponents, 0);
    if (data)
    {
        GLenum format;
        if (nrComponents == 1)
            format = GL_RED;
        else if (nrComponents == 3)
            format = GL_RGB;
        else if (nrComponents == 4)
            format = GL_RGBA;

        glBindTexture(GL_TEXTURE_2D, textureID);
        glTexImage2D(GL_TEXTURE_2D, 0, format, width, height, 0, format, GL_UNSIGNED_BYTE, data);
        glGenerateMipmap(GL_TEXTURE_2D);

        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

        stbi_image_free(data);
    }
    else
    {
        std::cout << "Texture failed to load at path: " << path << std::endl;
        stbi_image_free(data);
    }

    return textureID;
}

void mouseClick_callback(GLFWwindow* window, int button, int action, int mods) {
    if ((action == GLFW_PRESS) && (button == GLFW_MOUSE_BUTTON_RIGHT)) {
        double winX, winY;
        float winZ;
        glfwGetCursorPos(window, &winX, &winY);
        glReadPixels(
            (int)winX,
            (int)SCR_HEIGHT - (int)winY
            , 1, 1
            , GL_DEPTH_COMPONENT, GL_FLOAT
            , &winZ);

        float x = (2.0f * winX) / SCR_WIDTH - 1.0f;
        float y = 1.0f - (2.0f * winY) / SCR_HEIGHT;
        float z = winZ * 2.0 - 1.0f;
        //有像素被点中 
        if (winZ < 1.0f) {
            //float w = (2.0 * _near * _far) / (_far + _near - z * (_far - _near));
            float w = _near * _far / (_near * winZ - _far * winZ + _far);
            glm::vec4 wolrdPostion(x, y, z, 1);
            wolrdPostion *= w;
            wolrdPostion = glm::inverse(view) * glm::inverse(projection) * wolrdPostion;

            cout << " x:" << wolrdPostion.r
                << " y:" << wolrdPostion.y
                << " z:" << wolrdPostion.z
                << " w:" << w << endl;
        }
        else {
            cout << "没有像素被选中" << endl;;
        }
    }
}

shader.vs

#version 330 core
layout (location = 0) in vec3 aPos;
layout (location = 1) in vec2 aTexCoords;

out vec2 TexCoords;

uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;

void main()
{
    TexCoords = aTexCoords;    
    gl_Position = projection * view * model * vec4(aPos, 1.0);
}

shader.fs

#version 330 core 
out vec4 FragColor; 
float near = 0.1; 
float far = 100.0; 
float LinearizeDepth(float depth) { 
float z_ndc = depth * 2.0 - 1.0; // back to NDC
return (2.0 * near * far) / (far + near - z_ndc  * (far - near)); 
} 

in vec2 TexCoords;
uniform sampler2D texture1;
void main() { 
	//float depth = LinearizeDepth(gl_FragCoord.z) / far; // divide by far for demonstration
	//FragColor = vec4(vec3(depth), 1.0); 
	FragColor = texture(texture1,TexCoords);
}

运行效果
在这里插入图片描述
点击鼠标右键打印出该屏幕坐标的世界坐标。

模型控制

 主要要实现的效果是右击鼠标时可以进行拖动模型。
实现思路:点击屏幕坐标后将屏幕坐标转化为世界坐标与模型的世界坐标进行判断,当小于2.5的时候就认为该模型被拾取到了,然后将该模型的位置进行移动。

源码

main.cpp

#include <glad/glad.h> 
#include <GLFW/glfw3.h>
#include <iostream>
#include <cmath> 
#include "../shader.h"
#include "../camera.h"
#include <glm/glm.hpp> 
#include <glm/gtc/matrix_transform.hpp> 
#include <glm/gtc/type_ptr.hpp>
#include "../model.h"


void framebuffer_size_callback(GLFWwindow* window, int width, int height);
void mouse_callback(GLFWwindow* window, double xpos, double ypos);
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset);
void processInput(GLFWwindow* window);
unsigned int loadTexture(const char* path);
void mouseClick_callback(GLFWwindow* window, int button, int action, int mods);
glm::vec3 worldPosFromViewPort(int winX, int winY);

// settings
const unsigned int SCR_WIDTH = 800;
const unsigned int SCR_HEIGHT = 600;
float _near = 0.1, _far = 100;

// camera
Camera camera(glm::vec3(0.0f, 0.0f, 8.0f));
float lastX = (float)SCR_WIDTH / 2.0;
float lastY = (float)SCR_HEIGHT / 2.0;
bool firstMouse = true;

// timing
float deltaTime = 0.0f;
float lastFrame = 0.0f;

glm::mat4 view;
glm::mat4 projection;

bool LeftButtonHolding = false;
bool RightButtonHolding = false;

struct ModelInfo {
    Model* model;
    glm::vec3 worldPos;
    float pitch;
    float yaw;
    float roll;
    bool isSelected;
    string name;
};
map<string, ModelInfo> _Models;

int main()
{
    // glfw: initialize and configure
    // ------------------------------
    glfwInit();
    glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
    glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
    glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);

#ifdef __APPLE__
    glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE);
#endif

    // glfw window creation
    // --------------------
    GLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "LearnOpenGL", NULL, NULL);
    if (window == NULL)
    {
        std::cout << "Failed to create GLFW window" << std::endl;
        glfwTerminate();
        return -1;
    }
    glfwMakeContextCurrent(window);
    glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);
    glfwSetCursorPosCallback(window, mouse_callback);
    glfwSetScrollCallback(window, scroll_callback);
    glfwSetMouseButtonCallback(window, mouseClick_callback);

    // tell GLFW to capture our mouse
    //glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);

    // glad: load all OpenGL function pointers
    // ---------------------------------------
    if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress))
    {
        std::cout << "Failed to initialize GLAD" << std::endl;
        return -1;
    }

    // configure global opengl state
    // -----------------------------
    glEnable(GL_DEPTH_TEST);
    glDepthFunc(GL_LESS); // always pass the depth test (same effect as glDisable(GL_DEPTH_TEST))

    // build and compile shaders
    // -------------------------
    Shader shader("shaders/shader.vs", "shaders/shader.fs");

    // set up vertex data (and buffer(s)) and configure vertex attributes
    // ------------------------------------------------------------------
    float cubeVertices[] = {
        // positions          // texture Coords
        -0.5f, -0.5f, -0.5f,  0.0f, 0.0f,
         0.5f, -0.5f, -0.5f,  1.0f, 0.0f,
         0.5f,  0.5f, -0.5f,  1.0f, 1.0f,
         0.5f,  0.5f, -0.5f,  1.0f, 1.0f,
        -0.5f,  0.5f, -0.5f,  0.0f, 1.0f,
        -0.5f, -0.5f, -0.5f,  0.0f, 0.0f,

        -0.5f, -0.5f,  0.5f,  0.0f, 0.0f,
         0.5f, -0.5f,  0.5f,  1.0f, 0.0f,
         0.5f,  0.5f,  0.5f,  1.0f, 1.0f,
         0.5f,  0.5f,  0.5f,  1.0f, 1.0f,
        -0.5f,  0.5f,  0.5f,  0.0f, 1.0f,
        -0.5f, -0.5f,  0.5f,  0.0f, 0.0f,

        -0.5f,  0.5f,  0.5f,  1.0f, 0.0f,
        -0.5f,  0.5f, -0.5f,  1.0f, 1.0f,
        -0.5f, -0.5f, -0.5f,  0.0f, 1.0f,
        -0.5f, -0.5f, -0.5f,  0.0f, 1.0f,
        -0.5f, -0.5f,  0.5f,  0.0f, 0.0f,
        -0.5f,  0.5f,  0.5f,  1.0f, 0.0f,

         0.5f,  0.5f,  0.5f,  1.0f, 0.0f,
         0.5f,  0.5f, -0.5f,  1.0f, 1.0f,
         0.5f, -0.5f, -0.5f,  0.0f, 1.0f,
         0.5f, -0.5f, -0.5f,  0.0f, 1.0f,
         0.5f, -0.5f,  0.5f,  0.0f, 0.0f,
         0.5f,  0.5f,  0.5f,  1.0f, 0.0f,

        -0.5f, -0.5f, -0.5f,  0.0f, 1.0f,
         0.5f, -0.5f, -0.5f,  1.0f, 1.0f,
         0.5f, -0.5f,  0.5f,  1.0f, 0.0f,
         0.5f, -0.5f,  0.5f,  1.0f, 0.0f,
        -0.5f, -0.5f,  0.5f,  0.0f, 0.0f,
        -0.5f, -0.5f, -0.5f,  0.0f, 1.0f,

        -0.5f,  0.5f, -0.5f,  0.0f, 1.0f,
         0.5f,  0.5f, -0.5f,  1.0f, 1.0f,
         0.5f,  0.5f,  0.5f,  1.0f, 0.0f,
         0.5f,  0.5f,  0.5f,  1.0f, 0.0f,
        -0.5f,  0.5f,  0.5f,  0.0f, 0.0f,
        -0.5f,  0.5f, -0.5f,  0.0f, 1.0f
    };
    float planeVertices[] = {
        // positions          // texture Coords (note we set these higher than 1 (together with GL_REPEAT as texture wrapping mode). this will cause the floor texture to repeat)
         5.0f, -0.5f,  5.0f,  2.0f, 0.0f,
        -5.0f, -0.5f,  5.0f,  0.0f, 0.0f,
        -5.0f, -0.5f, -5.0f,  0.0f, 2.0f,

         5.0f, -0.5f,  5.0f,  2.0f, 0.0f,
        -5.0f, -0.5f, -5.0f,  0.0f, 2.0f,
         5.0f, -0.5f, -5.0f,  2.0f, 2.0f
    };
    // cube VAO
    unsigned int cubeVAO, cubeVBO;
    glGenVertexArrays(1, &cubeVAO);
    glGenBuffers(1, &cubeVBO);
    glBindVertexArray(cubeVAO);
    glBindBuffer(GL_ARRAY_BUFFER, cubeVBO);
    glBufferData(GL_ARRAY_BUFFER, sizeof(cubeVertices), &cubeVertices, GL_STATIC_DRAW);
    glEnableVertexAttribArray(0);
    glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 5 * sizeof(float), (void*)0);
    glEnableVertexAttribArray(1);
    glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 5 * sizeof(float), (void*)(3 * sizeof(float)));
    glBindVertexArray(0);
    // plane VAO
    unsigned int planeVAO, planeVBO;
    glGenVertexArrays(1, &planeVAO);
    glGenBuffers(1, &planeVBO);
    glBindVertexArray(planeVAO);
    glBindBuffer(GL_ARRAY_BUFFER, planeVBO);
    glBufferData(GL_ARRAY_BUFFER, sizeof(planeVertices), &planeVertices, GL_STATIC_DRAW);
    glEnableVertexAttribArray(0);
    glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 5 * sizeof(float), (void*)0);
    glEnableVertexAttribArray(1);
    glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 5 * sizeof(float), (void*)(3 * sizeof(float)));
    glBindVertexArray(0);

    // load textures
    // -------------
    unsigned int cubeTexture = loadTexture("../resources/container2.png");
    unsigned int floorTexture = loadTexture("../resources/rock.jpg");

    // shader configuration
    // --------------------
    shader.use();
    shader.setInt("texture1", 0);

    Model Zhang3 = Model("../resources/backpack/backpack.obj");
    _Models["zhang3"] = ModelInfo{ &Zhang3,glm::vec3(-3,0,0),0.0,0.0,0.0,false,"Zhang3" };
    Model Li4 = Model("../resources/backpack/backpack.obj");
    _Models["Li4"] = ModelInfo{ &Li4,glm::vec3(3,0,0),0.0,0.0,0.0,false,"Li4" };

    // render loop
    // -----------
    while (!glfwWindowShouldClose(window))
    {
        // per-frame time logic
        // --------------------
        float currentFrame = static_cast<float>(glfwGetTime());
        deltaTime = currentFrame - lastFrame;
        lastFrame = currentFrame;

        // input
        // -----
        processInput(window);

        // render
        // ------
        glClearColor(0.1f, 0.1f, 0.1f, 1.0f);
        glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

        shader.use();
        glm::mat4 model = glm::mat4(1.0f);
        view = camera.GetViewMatrix();
        projection = glm::perspective(glm::radians(camera.Zoom), (float)SCR_WIDTH / (float)SCR_HEIGHT, 0.1f, 100.0f);
        shader.setMat4("view", view);
        shader.setMat4("projection", projection);

        //model
        map<string, ModelInfo>::iterator _modelsIter;
        for (_modelsIter = _Models.begin(); _modelsIter != _Models.end(); _modelsIter++)
        {
            model = glm::mat4(1.0f);
            model = glm::translate(model, _modelsIter->second.worldPos);
            model = glm::rotate(model, _modelsIter->second.pitch, glm::vec3(1.0f, 0.0f, 0.0f));
            model = glm::rotate(model, _modelsIter->second.yaw, glm::vec3(0.0f, 1.0f, 0.0f));
            model = glm::rotate(model, _modelsIter->second.roll, glm::vec3(0.0f, 0.0f, 1.0f));

            shader.setMat4("model", model);
            _modelsIter->second.model->Draw(shader);
        }


        // floor
        glBindVertexArray(planeVAO);
        glBindTexture(GL_TEXTURE_2D, floorTexture);
        shader.setMat4("model", glm::mat4(1.0f));
        glDrawArrays(GL_TRIANGLES, 0, 6);
        glBindVertexArray(0);

        // glfw: swap buffers and poll IO events (keys pressed/released, mouse moved etc.)
        // -------------------------------------------------------------------------------
        glfwSwapBuffers(window);
        glfwPollEvents();
    }

    // optional: de-allocate all resources once they've outlived their purpose:
    // ------------------------------------------------------------------------
    glDeleteVertexArrays(1, &cubeVAO);
    glDeleteVertexArrays(1, &planeVAO);
    glDeleteBuffers(1, &cubeVBO);
    glDeleteBuffers(1, &planeVBO);

    glfwTerminate();
    return 0;
}

// process all input: query GLFW whether relevant keys are pressed/released this frame and react accordingly
// ---------------------------------------------------------------------------------------------------------
void processInput(GLFWwindow* window)
{
    if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
        glfwSetWindowShouldClose(window, true);

    if (glfwGetKey(window, GLFW_KEY_W) == GLFW_PRESS)
        camera.ProcessKeyboard(FORWARD, deltaTime);
    if (glfwGetKey(window, GLFW_KEY_S) == GLFW_PRESS)
        camera.ProcessKeyboard(BACKWARD, deltaTime);
    if (glfwGetKey(window, GLFW_KEY_A) == GLFW_PRESS)
        camera.ProcessKeyboard(LEFT, deltaTime);
    if (glfwGetKey(window, GLFW_KEY_D) == GLFW_PRESS)
        camera.ProcessKeyboard(RIGHT, deltaTime);
    if (glfwGetKey(window, GLFW_KEY_LEFT_CONTROL) == GLFW_PRESS)
    {
        for (map<string, ModelInfo>::iterator _modelsIter = _Models.begin(); _modelsIter != _Models.end(); _modelsIter++)
        {
            if (_modelsIter->second.isSelected) {
                _modelsIter->second.yaw += 0.1 * deltaTime;
                break;
            }
        }
    }
}

// glfw: whenever the window size changed (by OS or user resize) this callback function executes
// ---------------------------------------------------------------------------------------------
void framebuffer_size_callback(GLFWwindow* window, int width, int height)
{
    // make sure the viewport matches the new window dimensions; note that width and 
    // height will be significantly larger than specified on retina displays.
    glViewport(0, 0, width, height);
}


// glfw: whenever the mouse scroll wheel scrolls, this callback is called
// ----------------------------------------------------------------------
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset)
{
    camera.ProcessMouseScroll(static_cast<float>(yoffset));
}

// utility function for loading a 2D texture from file
// ---------------------------------------------------
unsigned int loadTexture(char const* path)
{
    unsigned int textureID;
    glGenTextures(1, &textureID);

    int width, height, nrComponents;
    unsigned char* data = stbi_load(path, &width, &height, &nrComponents, 0);
    if (data)
    {
        GLenum format;
        if (nrComponents == 1)
            format = GL_RED;
        else if (nrComponents == 3)
            format = GL_RGB;
        else if (nrComponents == 4)
            format = GL_RGBA;

        glBindTexture(GL_TEXTURE_2D, textureID);
        glTexImage2D(GL_TEXTURE_2D, 0, format, width, height, 0, format, GL_UNSIGNED_BYTE, data);
        glGenerateMipmap(GL_TEXTURE_2D);

        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

        stbi_image_free(data);
    }
    else
    {
        std::cout << "Texture failed to load at path: " << path << std::endl;
        stbi_image_free(data);
    }

    return textureID;
}

// glfw: whenever the mouse moves, this callback is called
// -------------------------------------------------------
void mouse_callback(GLFWwindow* window, double xposIn, double yposIn)
{
    if (LeftButtonHolding) {
        float xpos = static_cast<float>(xposIn);
        float ypos = static_cast<float>(yposIn);

        float xoffset = xpos - lastX;
        float yoffset = lastY - ypos; // reversed since y-coordinates go from bottom to top

        lastX = xpos;
        lastY = ypos;

        camera.ProcessMouseMovement(xoffset, yoffset);
    }

    if (RightButtonHolding) {
        for (map<string, ModelInfo>::iterator _modelsIter = _Models.begin(); _modelsIter != _Models.end(); _modelsIter++)
        {
            if (_modelsIter->second.isSelected) {
                _modelsIter->second.worldPos = worldPosFromViewPort((int)xposIn, (int)yposIn);
                break;
            }
        }
    }
}

void mouseClick_callback(GLFWwindow* window, int button, int action, int mods) {

    double winX, winY;
    glfwGetCursorPos(window, &winX, &winY);

    if ((action == GLFW_PRESS) && (button == GLFW_MOUSE_BUTTON_LEFT))
    {
        lastX = (float)winX;
        lastY = (float)winY;
        LeftButtonHolding = true; //只有按下鼠标左键时,才会改变摄像机角度
    }
    else
        LeftButtonHolding = false;

    if ((action == GLFW_PRESS) && (button == GLFW_MOUSE_BUTTON_RIGHT)) {
        RightButtonHolding = true;
        glm::vec3 wolrdPostion = worldPosFromViewPort((int)winX, (int)winY);

        for (map<string, ModelInfo>::iterator _modelsIter = _Models.begin(); _modelsIter != _Models.end(); _modelsIter++)
        {
            float _distance = glm::distance(_modelsIter->second.worldPos, glm::vec3(wolrdPostion));
            if (_distance < 2.5) {
                cout << _modelsIter->first << "模型被选中..." << endl;
                _modelsIter->second.isSelected = true;
                break;
            }
            else
                _modelsIter->second.isSelected = false;
        }
    }
    else
        RightButtonHolding = false;

}

glm::vec3 worldPosFromViewPort(int winX, int winY) {
    float winZ;
    glReadPixels(
        winX,
        (int)SCR_HEIGHT - winY
        , 1, 1
        , GL_DEPTH_COMPONENT, GL_FLOAT
        , &winZ);

    float x = (2.0f * (float)winX) / SCR_WIDTH - 1.0f;
    float y = 1.0f - (2.0f * (float)winY) / SCR_HEIGHT;
    float z = winZ * 2.0f - 1.0f;
    //有像素被点中 

    //float w = (2.0 * _near * _far) / (_far + _near - z * (_far - _near));
    float w = _near * _far / (_near * winZ - _far * winZ + _far);
    glm::vec4 wolrdPostion(x, y, z, 1);
    wolrdPostion *= w;
    wolrdPostion = glm::inverse(view) * glm::inverse(projection) * wolrdPostion;
    return wolrdPostion;
}

shader.vs

#version 330 core
layout (location = 0) in vec3 aPos;
layout (location = 1) in vec2 aTexCoords;

out vec2 TexCoords;

uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;

void main()
{
    TexCoords = aTexCoords;    
    gl_Position = projection * view * model * vec4(aPos, 1.0);
}

shader.fs

#version 330 core 
out vec4 FragColor; 
float near = 0.1; 
float far = 100.0; 
float LinearizeDepth(float depth) { 
float z_ndc = depth * 2.0 - 1.0; // back to NDC
return (2.0 * near * far) / (far + near - z_ndc  * (far - near)); 
} 

in vec2 TexCoords;
uniform sampler2D texture1;
void main() { 
	//float depth = LinearizeDepth(gl_FragCoord.z) / far; // divide by far for demonstration
	//FragColor = vec4(vec3(depth), 1.0); 
	FragColor = texture(texture1,TexCoords);
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/659735.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

PMP考试成绩查询流程

具体查询方法如下 当你在PMI的注册邮箱收到一封PMI发来的&#xff0c;标题为&#xff1a; 祝贺您获得PMP认证的邮件时&#xff0c;表明你通过了PMP考试。 若没收到邮件&#xff0c;可通过以下方式进行成绩查询&#xff1a; 1、打开PMI官网&#xff1a;www.pmi.org&#xff0…

给初级测试工程师的一些避坑建议

我遇到的大多数开发人员都不怎么热衷于测试。有些会去做测试&#xff0c;但大多数都不测试&#xff0c;不愿意测试&#xff0c;或者勉而为之。我喜欢测试&#xff0c;并且比起编写新的代码&#xff0c;愉快地花更多的时间在测试中。我认为&#xff0c;正是因为专注于测试&#…

【文生图系列】基础篇-变分推理(数学推导)

文章目录 KL散度前向 vs 反向 KL前向KL反向KL可视化 问题描述变分推理ELBO: Evidence Lower Bound参考 此篇博文主要介绍什么是变分推理(Variational Inference , VI)&#xff0c;以及它的数学推导公式。变分推理&#xff0c;是机器学习中一种流行的方式&#xff0c;使用优化的…

LLMs模型速览(GPTs、LaMDA、GLM/ChatGLM、PaLM/Flan-PaLM、BLOOM、LLaMA、Alpaca)

文章目录 一、 GPT系列1.1 GPTs&#xff08;OpenAI&#xff0c;2018——2020&#xff09;1.2 InstructGPT&#xff08;2022-3&#xff09;1.2.1 算法1.2.2 损失函数 1.3 ChatGPT&#xff08;2022.11.30&#xff09;1.4 ChatGPT plugin1.5 GPT-4&#xff08;2023.3.14&#xff0…

【kubernetes】集群架构介绍与基础环境准备

前言:二进制部署kubernetes集群在企业应用中扮演着非常重要的角色。无论是集群升级,还是证书设置有效期都非常方便,也是从事云原生相关工作从入门到精通不得不迈过的坎。通过本系列文章,你将从虚拟机准备开始,到使用二进制方式从零到一搭建起安全稳定的高可用kubernetes集…

Something of Information Security Management

1、信息安全管理基本概念&#xff0c;管理的目标、对象的基本内容、必要性。 信息安全管理是指通过制定和实施一系列的管理措施&#xff0c;保护信息系统中的信息资源免受各种威胁和风险的侵害&#xff0c;确保信息系统的安全、可靠、高效运行。信息安全管理的基本概念包括&…

java 文本处理系统Myeclipse开发mysql数据库web结构jsp编程计算机网页项目文本分词算法

一、源码特点 java 文本处理系统是一套完善的java web信息管理系统&#xff0c;利用java 对文本语句进行分词&#xff0c;对理解JSP java编程开发语言有帮助&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S 模式开发。开发环境为TOMCAT7.0,Myeclipse…

paddlespeech asr语音转录文字;sherpa 实时语音转录

1、paddlespeech asr语音转录文字 参考&#xff1a; https://github.com/PaddlePaddle/PaddleSpeech 安装后运行可能会numpy相关报错&#xff1b;可能是python和numpy版本高的问题&#xff0c;我这里最终解决是python 3.10 numpy 1.22.0&#xff1b; pip install paddlepadd…

蔚来测试总监,让我们用这份《测试用例规范》,再也没加班过

经常看到无论是刚入职场的新人&#xff0c;还是工作了一段时间的老人&#xff0c;都会对编写测试用例感到困扰&#xff1f;例如&#xff1a; 固然&#xff0c;编写一份好的测试用例需要&#xff1a;充分的需求分析能力 理论及经验加持&#xff0c;作为测试职场摸爬打滚的老人&…

【计网】第二章 物理层

文章目录 物理层一、物理层的基本概念二、数据通信的基础知识2.1 数据通信系统的模型2.2 有关信道的基本概念2.3 信道的极限容量2.3.1 奈奎斯特定理2.3.1 香农定理2.3.2 信噪比 三、物理层下面的传输媒体3.1 导引型传输媒体3.2 非导引型传输媒体 四、信道复用技术4.1 频分复用 …

基于RGBD和惯性输入的实时室内场景重建

来源&#xff1a;投稿 作者&#xff1a;小灰灰 编辑&#xff1a;学姐 论文标题&#xff1a;《REAL-TIME INDOOR SCENE RECONSTRUCTION WITH RGBD AND INERTIA INPUT》 论文链接&#xff1a;https://arxiv.org/pdf/2008.00490.pdf 代码链接&#xff1a;https://github.com/CWa…

Spark01-Spark快速上手、运行模式、运行框架、核心概念

1 概述 Spark和Hadoop Hadoop HDFS(GFS:TheGoogleFileSystem)MapReduce总结&#xff1a;性能横向扩展变得容易&#xff0c;横向拓展:增加更多的计算节点来扩展系统的处理能力Hbase&#xff1a;分布式数据库 Spark Spark CoreSpark SQLSQL 方言&#xff08;HQL)Spark Streamin…

玩转注册表,这几个windowsAPI函数就够了

注册表的结构 注册表是一个数据库&#xff0c;它的结构同逻辑磁盘类似。注册表包含键(Key)&#xff0c;它类似磁盘中的目录&#xff0c;注册表还包含键值(Value)&#xff0c;它类似磁盘中的文件。一个键可以包含多个子健和键值&#xff0c;其中键值用于存储数据&#xff0c;顶…

陌陌聊天数据分析 (一)

陌陌聊天数据分析&#xff08;一&#xff09; 目标 基于Hadoop和Hive实现聊天数据统计分析&#xff0c;构建聊天数据分析报表 需求 统计今日总消息量统计今日每小时消息量&#xff0c;发送和接收用户数量统计今日各地区发送消息数据量统计今日发送消息和接收消息用户数统计…

vue移动端手把手教你封装一个可移动悬浮窗、可移动打开扇形悬浮按钮组件

目录 概要 功能设计 技术细节-API回顾 touchstart 事件 touchmove事件 完整的代码实现&#xff08;悬浮窗&#xff09; 运行效果 进阶封装——可移动扇形展开悬浮按钮 实现效果演示 需求分析 代码实现 概要 悬浮窗、悬浮按钮是项目中常见的一种交互设计&#xff0c;特别是在移…

Linux国产操作系统,UCA-系统工程师学习必备技能,文件管理和查找、内容查找、归档的再学习

复习和巩固Linux的基础操作&#xff0c;对文件管理和查找、内容查找、归档以及管道和输入输出重定向进行再学习。 目录 1.文件管理 1. 1.head命令 1.2. tail命令 1.3. more/less命令 1.4. wc 统计命令 1.5. sort 排序命令 1.6. uniq 去重命令 1.7. paste合并命令 2.文…

基于matlab对现代相控阵系统中常用的子阵列进行建模分析(附源码)

一、前言 本示例说明如何使用相控阵系统工具箱对现代相控阵系统中常用的子阵列进行建模并进行分析。 相控阵天线与传统碟形天线相比具有许多优势。相控阵天线的元件更容易制造;整个系统受组件故障的影响较小;最重要的是&#xff0c;可以向不同方向进行电子扫描。 但是&#xff…

耗时半个月,终于把十几个大厂的python面试题整理成了PDF合集(基础+高级+web+数据库+爬虫)

大家好&#xff0c;最近有不少小伙伴在后台留言&#xff0c;近期的面试越来越难了&#xff0c;要背的越来越多了&#xff0c;考察得越来越细&#xff0c;明摆着就是想让我们徒手造航母嘛&#xff01;实在是太为难我们这些程序员了。 这不&#xff0c;为了帮大家节约时间&#…

JVM垃圾回收与双亲委派模型

观前提示:本篇博客演示使用的 IDEA 版本为2021.3.3版本,使用的是Java8(又名jdk1.8) 前端使用VSCode(Visual Studio Code1.78.2) 电脑使用的操作系统版本为 Windows 10 目录 1. 什么是 JVM 2. jvm 发展史 2.1 Sun Classic VM 2.2 Exact VM 2.3 HotSpot VM 2.4 JRockit …

Docker部署——将jar包打成docker镜像并启动容器

在代码编写完成即将部署的时候&#xff0c;如果采用docker容器的方法&#xff0c;需要将jar包打成docker镜像并通过镜像将容器启动起来。具体的步骤如下。 一、首先下载java镜像 先使用docker search java命令进行搜索。 然而在拉取镜像的时候要注意不能直接去选择pull java ,…