MongoDB复制(副本)集实战及其原理分析-04

news2024/11/15 19:37:33

MongoDB复制集

复制集架构

在生产环境中,不建议使用单机版的MongoDB服务器。 原因如下:
       单机版的MongoDB无法保证可靠性,一旦进程发生故障或是服务器宕机,业务 将直接不可用。
        一旦服务器上的磁盘损坏,数据会直接丢失,而此时并没有任何副本可用。 
Mongodb复制集(Replication Set)由一组Mongod实例(进程)组成,包含一个 Primary节点和多个Secondary节点,Mongodb Driver(客户端)的所有数据都写入 Primary,Secondary从Primary同步写入的数据,以保持复制集内所有成员存储相同的数据集,提供数据的高可用。 复制集提供冗余和高可用性,是所有生产部署的基础。 它的现实 依赖于两个方面的功能:
       1、数据写入时将数据迅速复制到另一个独立节点上
       2、在接受写入的节点发生故障时自动选举出一个新的替代节点
在实现高可用的同时,复制集实现了其他几个附加作用:
数据分发 : 将数据从一个区域复制到另一个区域,减少另一个区域的读延迟
读写分离 : 不同类型的压力分别在不同的节点上执行
异地容灾 : 在数据中心故障时候快速切换到异地
三节点复制集模式
常见的复制集架构由3个成员节点组成,其中存在几种不同的模式。
PSS模式(官方推荐模式)
PSS模式由一个主节点和两个备节点所组成,即Primary+Secondary+Secondary。

此模式始终提供数据集的两个完整副本,如果主节点不可用,则复制集选择备节点作为主节
点并继续正常操作。旧的主节点在可用时重新加入复制集。

PSA模式
PSA模式由一个主节点、一个备节点和一个仲裁者节点组成,即
Primary+Secondary+Arbiter

其中,Arbiter节点不存储数据副本,也不提供业务的读写操作。Arbiter节点发生故障不影
响业务,仅影响选举投票。此模式仅提供数据的一个完整副本,如果主节点不可用,则复制
集将选择备节点作为主节点

典型三节点复制集环境搭建
        即使暂时只有一台服务器,也要以单节点模式启动复制集
        单机多实例启动复制集
        单节点启动复制集
复制集注意事项
        关于硬件:
                因为正常的复制集节点都有可能成为主节点,它们的地位是一样的,因此硬件配  置上必须一致;
                为了保证节点不会同时宕机,各节点使用的硬件必须具有独立性。
        关于软件:
                复制集各节点软件版本必须一致 ,以避免出现不可预知的问题。
                增加节点不会增加系统写性能
环境准备
        安装 MongoDB并配置好环境变量
        确保有 10GB 以上的硬盘空间
准备配置文件
        复制集的每个mongod进程应该位于不同的服务器。我们现在在一台机器上运行3个进程, 因此要为它们各自配置: 不同的端口(28017/28018/28019) 不同的数据目录
mkdir ‐p /data/db{1,2,3}
不同日志文件路径(例如:/data/db1/mongod.log)
创建配置文件/data/db1/mongod.conf,内容如下:
systemLog:
  destination: file
  path: /data/db1/mongod.log # log path
  logAppend: true
storage:
  dbPath: /data/db1 # data directory
net:
  bindIp: 0.0.0.0
  port: 28017 # port
replication:
  replSetName: rs0
processManagement:
  fork: true
参考上面配置修改端口,路径,依次配置db2,db3。 注意必须是yaml格式
启动 MongoDB 进程
mongod ‐f /data/db1/mongod.conf
mongod ‐f /data/db2/mongod.conf
mongod ‐f /data/db3/mongod.conf
注意:如果启用了 SELinux,可能阻止上述进程启动。简单起见请关闭 SELinux
# 永久关闭,将SELINUX=enforcing改为SELINUX=disabled,设置后需要重启才能生效
 vim /etc/selinux/config
# 查看SELINUX
 /usr/sbin/sestatus ‐v
配置复制集
复制集通过replSetInitiate命令或 mongo shell的rs.initiate() 进行初始化,初始化后各个成 员间开始发送心跳消息,并发起Priamry选举操作,获得『大多数』成员投票支持的节点, 会成Primary,其余节点成为Secondary。
方法1
# mongo ‐‐port 28017
# 初始化复制集
> rs.initiate()
# 将其余成员添加到复制集
> rs.add("192.168.65.174:28018")
> rs.add("192.168.65.174:28019")
方法2
# mongo ‐‐port 28017
 # 初始化复制集
 > rs.initiate({
     _id: "rs0",
     members: [{
             _id: 0,
             host: "192.168.65.174:28017"
         },{
             _id: 1,
             host: "192.168.65.174:28018"
         },{
             _id: 2,
             host: "192.168.65.174:28019"
     }]
 })
验证
MongoDB 主节点进行写入
# mongo ‐‐port 28017
rs0:PRIMARY> db.user.insert([{name:"fox"},{name:"monkey"}])
MongoDB 从节点进行读
# mongo ‐‐port 28018
# 指定从节点可读
rs0:SECONDARY> rs.secondaryOk()
rs0:SECONDARY> db.user.find()
复制集状态查询
查看复制集整体状态:
rs.status()
可查看各成员当前状态,包括是否健康,是否在全量同步,心跳信息,增量同步信息, 选 举信息,上一次的心跳时间等。
members一列体现了所有复制集成员的状态,主要如下:
health:成员是否健康,通过心跳进行检测。 state/stateStr:成员的状态,PRIMARY表示主节点,而SECONDARY则表示备节点,如果节点出
现故障,则可能出现一些其他的状态,例如RECOVERY。
uptime:成员的启动时间。
optime/optimeDate:成员最后一条同步oplog的时间。
optimeDurable/optimeDurableDate:成员最后一条同步oplog的时间。
pingMs:成员与当前节点的ping时延。
syncingTo:成员的同步来源。

查看当前节点角色:

db.isMaster()
除了当前节点角色信息,是一个更精简化的信息,也返回整个复制集的成员列表,真正的 Primary是谁,协议相关的配置信息等,Driver 在首次连接复制集时会发送该命令。

Mongo Shell复制集命

rs.add()

为复制集新增节

rs.addArb()

为复制集新增一个 arbiter

rs.conf()

返回复制集配置信息

rs.freeze()

防止当前节点在一段时间内选举成为主节点

rs.help()

返回 replica set 的命令帮助

rs.initiate()

初始化一个新的复制集

rs.printReplicationInfo()

以主节点的视角返回复制的状态报告

rs.printSecondaryReplicationInfo()

以从节点的视角返回复制状态报告

rs.reconfig()

过重新应用复制集配置来为复制集更新配置

rs.remove()

复制集中移除一个节点

rs.secondaryOk()

为当前的连接设置 从节点可读

rs.status()

返回复制集状态信息。

rs.stepDown()

当前的 primary 变为从节点并触发 election

rs.syncFrom()

设置复制集节点哪个节点处同步数据 ,将会覆盖默认 选取逻

 复制集连接方式

 

方式二(强烈推荐) :通过高可用 Uri 的方式连接 MongoDB,当 Primary 故障切换后,MongoDB Driver 可自动感知并把流量路由到新的 Primary 节点

 springboot操作复制集配置

spring:
  data:
  mongodb:
  uri:
mongodb://yanqiuxiang:yanqiuxiang@192.168.30.130:192.168.30.130:192.168.30.130:28019/test?authSource=admin&replicaSet=rs0
复制集成员角色
复制集里面有多个节点,每个节点拥有不同的职责。 在看成员角色之前,先了解两个重要属性:
属性一:Priority = 0
当 Priority 等于 0 时,它不可以被复制集选举为主 ,Priority 的值越高,则被选举为主的概 率更大。通常,在跨机房方式下部署复制集可以使用该特性。假设使用了机房A和机房B, 由于主要业务与机房A更近,则可以将机房B的复制集成员Priority设置为0,这样主节点就 一定会是A机房的成员。
属性二:Vote = 0
不可以参与选举投票,此时该节点的 Priority 也必须为 0,即它也不能被选举为主。 由于一 个复制集中最多只有7个投票成员,因此多出来的成员则必须将其vote属性值设置为0,即 这些成员将无法参与投票。
成员角色
        Primary:主节点,其接收所有的写请求,然后把修改同步到所有备节点。 一个 复制集只能有一个主节点,当主节点“挂掉”后,其他节点会重新选举出来一个主节 点。
        Secondary:备节点,与主节点保持同样的数据集。当主节点“挂掉”时,参与 竞选主节点。 分为以下三个不同类型: Hidden = false:正常的只读节点,是否可选为主,是否可投 票,取决于 Priority,Vote 的值;
        Hidden = true:隐藏节点,对客户端不可见, 可以参与选 举,但是 Priority 必须为 0 即不能被提升为主。 由于隐藏节点不 会接受业务访问,因此可通过隐藏节点做一些数据备份、离线计算 的任务,这并不会影响整个复制集。
        Delayed :延迟节点,必须同时具备隐藏节点和Priority0的特 性, 会延迟一定的时间(
SlaveDelay 配置决定)从上游复制增量, 常用于快速回滚场景。
        Arbiter:仲裁节点,只用于参与选举投票,本身不承载任何数据,只作为投票 角色。 比如你部署了2个节点的复制集,1个 Primary,1个Secondary,任意节点宕 机,复制集将不能提供服务了(无法选出Primary),这时可以给复制集添加㇐个 Arbiter节点,即使有节点宕机,仍能选出Primary。 Arbiter本身不存储数据,是非 常轻量级的服务,当复制集成员为偶数时,最好加入㇐个Arbiter节点,以提升复制 集可用性

 

配置隐藏节点

很多情况下将节点设置为隐藏节点是用来协助 delayed members 的。如果我们仅仅需要
防止该节点成为主节点,我们可以通过 priority 0 member 来实现。
cfg = rs.conf()
cfg.members[1].priority = 0
cfg.members[1].hidden = true
rs.reconfig(cfg)
设置完毕后,该从节点的优先级将变为 0 来防止其升职为主节点,同时其也是对应用程序 不可见的。在其他节点上执行 db.isMaster() 将不会显示隐藏节点。
配置延时节点
当我们配置一个延时节点的时候,复制过程与该节点的 oplog 都将延时。延时节点中的数 据集将会比复制集中主节点的数据延后。举个例子,现在是09:52,如果延时节点延后了1 小时,那么延时节点的数据集中将不会有08:52之后的操作。
cfg = rs.conf()
cfg.members[1].priority = 0
cfg.members[1].hidden = true
#延迟1分钟
cfg.members[1].slaveDelay = 60
rs.reconfig(cfg)
查看复制延迟
如果希望查看当前节点oplog的情况,则可以使用rs.printReplicationInfo()命令

这里清晰地描述了oplog的大小、最早一条oplog以及最后一条oplog的产生时间,log length start to end所指的是一个复制窗口(时间差)。 通常在oplog大小不变的情况下, 业务写操作越频繁,复制窗口就会越短。 在节点上执行rs.printSecondaryReplicationInfo()命令,可以一并列出所有备节点成员的 同步延迟情况

添加投票节点

# 为仲裁节点创建数据目录,存放配置数据。该目录将不保存数据集
mkdir /data/arb
# 启动仲裁节点,指定数据目录和复制集名称
mongod ‐‐port 30000 ‐‐dbpath /data/arb ‐‐replSet rs0
# 进入mongo shell,添加仲裁节点到复制集
rs.addArb("ip:30000")
移除复制集节点
使用 rs.remove() 来移除节点
rs.remove("ip:port")
通过 rs.reconfig() 来移除节点
cfg = rs.conf()
cfg.members.splice(2,1) #从2开始移除1个元素
rs.reconfig(cfg)
更改复制集节点
cfg = rs.conf()
cfg.members[0].host = "ip:port"
rs.reconfig(cfg)
复制集高可用
复制集选举
MongoDB的复制集选举使用 Raft算法( https://raft.github.io/ 来实现, 选举成功的必要 条件是大多数投票节点存活 。在具体的实现中,MongoDB对raft协议添加了一些自己的扩 展,这包括:
支持chainingAllowed链式复制,即 备节点不只是从主节点上同步数据,还可以 选择一个离自己最近(心跳延时最小)的节点来复制数据
增加了预投票阶段,即preVote,这主要是用来避免网络分区时产生Term(任期) 值激增的问题
支持投票优先级 ,如果备节点发现自己的优先级比主节点高,则会主动发起投票 并尝试成为新的主节点
一个复制集最多可以有50 个成员,但只有 7 个投票成员。 这是因为一旦过多的成员参与数 据复制、投票过程,将会带来更多可靠性方面的问题。

投票成员数

大多数

容忍失效数

1

1

0

2

2

0

3

2

1

4

3

1

5

3

2

6

4

2

7

4

3

当复制集内存活的成员数量不足大多数时,整个复制集将无法选举出主节点,此时无法提供 写服务,这些节点都将处于只读状态。 此外,如果希望避免平票结果的产生,最好使用奇数 个节点成员,比如3个或5个。当然,在MongoDB复制集的实现中,对于平票问题已经提 供了解决方案:
        为选举定时器增加少量的随机时间偏差,这样避免各个节点在同一时刻发起选 举,提高成功率。
        使用仲裁者角色,该角色不做数据复制,也不承担读写业务,仅仅用来投票。
自动故障转移
在故障转移场景中,我们所关心的问题是:
        备节点是怎么感知到主节点已经发生故障的?
        如何降低故障转移对业务产生的影响?

        一个影响检测机制的因素是心跳,在复制集组建完成之后,各成员节点会开启定时器, 持续向其他成员发起心跳 ,这里涉及的参数为heartbeatIntervalMillis,即心跳间隔时间, 默认值是2s。如果心跳成功,则会持续以2s的频率继续发送心跳;如果心跳失败,则会立 即重试心跳,一直到心跳恢复成功。
        另一个重要的因素是选举超时检测,一次心跳检测失败并不会立即触发重新选举。 实际
上除了心跳,成员节点还会启动一个选举超时检测定时器,该定时器默认以10s的间隔执 行,具体可以通过electionTimeoutMillis参数指定: 如果心跳响应成功,则取消上一次的electionTimeout调度(保证不会发起 选举),并发起新一轮electionTimeout调度。 如果心跳响应迟迟不能成功,那么electionTimeout任务被触发,进而导致 备节点发起选举并成为新的主节点。 在MongoDB的实现中,选举超时检测的周期要略大于electionTimeoutMillis设定。该周 期会加入一个随机偏移量,大约在10~11.5s,如此的设计是为了错开多个备节点主动选举 的时间,提升成功率。
因此,在electionTimeout任务中触发选举必须要满足以下条件:
(1)当前节点是备节点。
(2)当前节点具备选举权限。
(3)在检测周期内仍然没有与主节点心跳成功。

 业务影响评估

在复制集发生主备节点切换的情况下,会出现短暂的无主节点阶段,此时无法接 受业务写操作。 如果是因为主节点故障导致的切换,则对于该节点的所有读写操作都 会产生超时。如果使用MongoDB 3.6及以上版本的驱动,则可以通过开启 retryWrite来降低影响。
# MongoDB Drivers 启用可重试写入
mongodb://localhost/?retryWrites=true
# mongo shell
mongo ‐‐retryWrites
如果主节点属于强制掉电,那么整个Failover过程将会变长 ,很可能需要在 Election定时器超时后才被其他节点感知并恢复,这个时间窗口一般会在12s以内。 然而实际上,对于业务呼损的考量还应该加上客户端或mongos对于复制集角色的监 视和感知行为(真实的情况可能需要长达30s以上)。
对于非常重要的业务,建议在业务层面做一些防护策略,比如设计重试机制。
思考:如何优雅的重启复制集?
如果想不丢数据重启复制集,更优雅的打开方式应该是这样的:
1. 逐个重启复制集里所有的Secondary节点
2. 对Primary发送rs.stepDown()命令,等待primary降级为Secondary
3. 重启降级后的Primary
复制集数据同步机制
       在复制集架构中,主节点与备节点之间是通过oplog来同步数据的 ,这里的oplog是一 个特殊的固定集合,当主节点上的一个写操作完成后,会向oplog集合写入一条对应的日 志,而备节点则通过这个oplog不断拉取到新的日志,在本地进行回放以达到数据同步的目 的

 什么是oplog

        MongoDB o plog 是 Local 库下的一个集合,用来保存写操作所产生的增量日 志 (类似于 MySQL 中 的 Binlog)。
        它是一个 Capped Collection(固定集合) ,即超出配置的最大值后,会自动删 除最老的历史数据,MongoDB 针对 o plog 的删除有特殊优化,以提升删除效率。
        主节点产生新的 o plog Entry,从节点通过复制 o plog 并应用来保持和主节点 的状态一致;
查看oplog
use local
db.oplog.rs.find().sort({$natural:‐1}).pretty()
local.system.replset:用来记录当前复制集的成员。
local.startup_log:用来记录本地数据库的启动日志信息。
local.replset.minvalid:用来记录复制集的跟踪信息,如初始化同步需要的字段。
ts: 操作时间,当前timestamp + 计数器,计数器每秒都被重置
v:oplog版本信息
op:操作类型:
i:插⼊操作
u:更新操作
d:删除操作
c:执⾏命令(如createDatabase,dropDatabase)
n:空操作,特殊⽤途
ns:操作针对的集合
o:操作内容
o2:操作查询条件,仅update操作包含该字段
ts字段描述了oplog产生的时间戳,可称之为optime。 optime是备节点实现增量日志同步 的关键 ,它保证了oplog是节点有序的,其由两部分组成:
        当前的系统时间,即UNIX时间至现在的秒数,32位。
        整数计时器,不同时间值会将计数器进行重置,32位
        optime属于BSON的Timestamp类型,这个类型一般在MongoDB内部使用。既然 oplog 保证了节点级有序,那么备节点便可以通过轮询的方式进行拉取 ,这里会用到可持续追踪的 游标(tailable cursor)技术。
每个备节点都分别维护了自己的一个offset,也就是从主节点拉取的最后一条日志的 optime,在执行同步时就通过这个optime向主节点的oplog集合发起查询。 为了避免不停 地发起新的查询链接,在启动第一次查询后可以将cursor挂住(通过将cursor设置为 tailable)。这样只要oplog中产生了新的记录,备节点就能使用同样的请求通道获得这些 数据。tailable cursor只有在查询的集合为固定集合时才允许开启。

oplog集合的大小
oplog集合的大小可以通过参数replication.oplogSizeMB设置,对于64位系统来说,
oplog的默认值为:
oplogSizeMB = min(磁盘可用空间*5%,50GB)
对于大多数业务场景来说,很难在一开始评估出一个合适的oplogSize,所幸的是
MongoDB在4.0版本之后提供了replSetResizeOplog命令,可以实现动态修改oplogSize
而不需要重启服务器。
# 将复制集成员的oplog大小修改为60g 指定大小必须大于990M
db.adminCommand({replSetResizeOplog: 1, size: 60000})
# 查看oplog大小
use local
db.oplog.rs.stats().maxSize
幂等性
每一条oplog记录都描述了一次数据的原子性变更, 对于oplog来说,必须保证是幂等性 的 。也就是说,对于同一个oplog,无论进行多少次回放操作,数据的最终状态都会保持不 变。某文档x字段当前值为100,用户向Primary发送一条{$inc: {x: 1}},记录oplog时会转 化为一条{$set: {x: 101}的操作,才能保证幂等性。
幂等性的代价
简单元素的操作,$inc 转化为 $set并没有什么影响,执行开销上也差不多,但当遇到数组 元素操作时,情况就不一样了。
测试
db.coll.insert({_id:1,x:[1,2,3]})
在数组尾部push 2个元素,查看oplog发现$push操作被转换为了$set操作(设置数组指定
位置的元素为某个值)
rs0:PRIMARY> db.coll.update({_id: 1}, {$push: {x: { $each: [4, 5] }}})
 WriteResult({ "nMatched" : 1, "nUpserted" : 0, "nModified" : 1 })
 rs0:PRIMARY> db.coll.find()
 { "_id" : 1, "x" : [ 1, 2, 3, 4, 5 ] }
 rs0:PRIMARY> use local
 switched to db local
 rs0:PRIMARY> db.oplog.rs.find({ns:"test.coll"}).sort({$natural:‐1}).prett
()
 {
 "op" : "u",
 "ns" : "test.coll",
 "ui" : UUID("69c871e8‐8f99‐4734‐be5f‐c9c5d8565198"),
 "o" : {
 "$v" : 1,
 "$set" : {
 "x.3" : 4,
 "x.4" : 5
 }
 },
 "o2" : {
 "_id" : 1
 },
 "ts" : Timestamp(1646223051, 1),
 "t" : NumberLong(4),
 "v" : NumberLong(2),
 "wall" : ISODate("2022‐03‐02T12:10:51.882Z")
 }
$push转换为带具体位置的$set开销上也差不多,但接下来再看看往数组的头部添加2个元 素

可以发现, 当向数组的头部添加元素时 ,oplog里的$set操作不再是设置数组某个位置的值 (因为基本所有的元素位置都调整了),而是$set数组最终的结果,即整个数组的内容都要 写入oplog。当push操作指定了$slice或者$sort参数时,oplog的记录方式也是一样的, 会 将整个数组的内容作为$set的参数。 $pull, $addToSet等更新操作符也是类似,更新数组 后,oplog里会转换成$set数组的最终内容,才能保证幂等性。
oplog的写入被放大,导致同步追不上——大数组更新
当数组非常大时,对数组的一个小更新,可能就需要把整个数组的内容记录到oplog里,我 遇到一个实际的生产环境案例,用户的文档内包含一个很大的数组字段,1000个元素总大 小在64KB左右,这个数组里的元素按时间反序存储,新插入的元素会放到数组的最前面
($position: 0),然后保留数组的前1000个元素($slice: 1000)。
上述场景导致,Primary上的每次往数组里插入一个新元素(请求大概几百字节),oplog里 就要记录整个数组的内容,Secondary同步时会拉取oplog并重放,Primary到Secondary 同步oplog的流量是客户端到Primary网络流量的上百倍,导致主备间网卡流量跑满,而且由于oplog的量太大,旧的内容很快被删除掉,最终导致Secondary追不上,转换为 RECOVERING状态。 在文档里使用数组时,一定得注意上述问题,避免数组的更新导致同步开销被无限放大的问 题。使用数组时,尽量注意:
        1. 数组的元素个数不要太多,总的大小也不要太大
        2. 尽量避免对数组进行更新操作
        3. 如果一定要更新,尽量只在尾部插入元素,复杂的逻辑可以考虑在业务层面上来支 持

复制延迟
由于oplog集合是有固定大小的,因此存放在里面的oplog随时可能会被新的记录冲 掉。 如果备节点的复制不够快,就无法跟上主节点的步伐,从而产生复制延迟 (replication lag)问题 。这是不容忽视的,一旦备节点的延迟过大,则随时会发生复制断 裂的风险,这意味着备节点的optime(最新一条同步记录)已经被主节点老化掉,于是备 节点将无法继续进行数据同步。
为了尽量避免复制延迟带来的风险,我们可以采取一些措施,比如:
        增加oplog的容量大小,并保持对复制窗口的监视。
        通过一些扩展手段降低主节点的写入速度。
        优化主备节点之间的网络。
        避免字段使用太大的数组(可能导致oplog膨胀)

数据回滚
        由于复制延迟是不可避免的,这意味着主备节点之间的数据无法保持绝对的同步。 当复 制集中的主节点宕机时,备节点会重新选举成为新的主节点。那么,当旧的主节点重新加入 时,必须回滚掉之前的一些“脏日志数据”,以保证数据集与新的主节点一致。 主备复制集 合的差距越大,发生大量数据回滚的风险就越高。
         对于写入的业务数据来说,如果已经被复制到了复制集的大多数节点,则可以避免被回 滚的风险。 应用上可以通过设定更高的写入级别(writeConcern:majority)来保证数据 的持久性。这些由旧主节点回滚的数据会被写到单独的rollback目录下,必要的情况下仍然 可以恢复这些数据。
当rollback发生时,MongoDB将把rollback的数据以BSON格式存放到dbpath路径下 rollback文件夹中,BSON文件的命名格式如下:<database>.<collection>. <timestamp>.bson
mongorestore ‐‐host 192.168.30.130:27018 ‐‐db test ‐‐collection emp ‐u yanqiuxiang ‐p
yanqiuxiang
‐‐authenticationDatabase=admin rollback/emp_rollback.bson
同步源选择
MongoDB是允许通过备节点进行复制的,这会发生在以下的情况中:
在settings.chainingAllowed开启的情况下,备节点自动选择一个最近的节点 (ping命令时延最小)进行同步。 settings.chainingAllowed选项默认是开启的,也 就是说默认情况下备节点并不一定会选择主节点进行同步,这个副作用就是会带来延 迟的增加,你可以通过下面的操作进行关闭:
cfg = rs.config()
cfg.settings.chainingAllowed = false
rs.reconfig(cfg)
使用replSetSyncFrom命令临时更改当前节点的同步源,比如在初始化同步 时将同步源指向备节点来降低对主节点的影响。
db.adminCommand( { replSetSyncFrom: "hostname:port" })

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/659050.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

UDS系列-31服务(Routine Control)

诊断协议那些事儿 诊断协议那些事儿专栏系列文章,本文介绍例程控制服务RoutineControl,该服务的目的是Client端使用Routine Control服务来执行定义的步骤序列并获取特定序列的相关结果。这个服务经常在EOL、Bootloader中使用,比如,检查刷写条件是否满足、擦除内存、覆盖正…

post接口请求测试,通俗易懂

目录 前言&#xff1a; GET方法和POST方法传递数据的异同 POST方法如何传递数据 接口测试软件简介 POST请求接口的测试 测试方法 3.保存接口测试用例&#xff0c;生成自动化测试套件 总结 前言&#xff1a; Post请求是HTTP中请求方法之一&#xff0c;用于向服务器提交…

AI 绘画(2):Ai模型训练,Embedding模型,实现“人物模型“自由

文章目录 文章回顾感谢人员题外话Ai绘画公约Ai模型训练硬件要求显存设置查看显存大小显存过小解决方法 视频教程前期准备SD配置设置SD设置配置SD训练配置pt生成训练集收集训练集要求截图软件推荐训练集版权声明一键重命名图片训练图片来源批量修改图片尺寸 开始训练导入训练集&…

MQTTX的使用

1.MQTT介绍 MQTT是一种常用的物联网协议。MQTT&#xff08;Message Queuing Telemetry Transport&#xff09;是一种轻量级的发布/订阅通信协议&#xff0c;用于在物联网&#xff08;IoT&#xff09;和机器对机器&#xff08;M2M&#xff09;通信中传输消息。 MQTT协议被设计用…

013.【排序算法】合并排序法

1. 合并排序法 合并排序法是针对已经排序好的两个或两个以上的数列&#xff0c;通过合并的方式&#xff0c;将其组合成一个大的且排序好的数列。首先是将无序的数列分成若干小份&#xff0c;分若干份的规则就是不断把每段长度除以2&#xff08;对半分&#xff09;&#xff0c;…

Jmeter断言详细使用教程

目录 前言&#xff1a; 断言介绍与使用 响应断言 断言持续时间 XML断言 1、响应断言 2、JSON Assertion 3、Size Assertion&#xff08;见图知意&#xff09; 4、JSR223 Assertion JSR223 Assertion实例&#xff1a; 5、XPath Assertion 6、Compare Assertion 7、断言持续时间…

如何获得忠诚的铁粉

目录 1.选择热门主题 2.提供独特观点&#xff08;原创精神&#xff09; 3.写作风格&#xff08;目录定位分点总结&#xff09; 4.提供有价值的内容 5.总结&#xff1a; &#x1f4e2;导语&#xff1a;赢得铁粉&#xff08;粉丝&#xff09;的支持对于一个作者来说至关重要。…

前端Vue加载中页面动画弹跳动画loading

前端Vue加载中页面动画弹跳动画loading&#xff0c; 下载完整代码请访问uni-app插件市场址:https://ext.dcloud.net.cn/plugin?id13091 效果图如下&#xff1a; #### 使用方法 使用方法 <!-- ref:唯一ref top&#xff1a;距离中间顶部距离 --> <cc-loading ref&…

Postman大势已去,Apifox的时代已到来

目录 前言&#xff1a; 前情简介&#xff1a;亲身经历节选 Code: 403 “将我踢飞” 浓眉大眼的 Swagger 把我欺骗 工作提效的版本答案 为什么是Apifox 贴心为你 写在最后 前言&#xff1a; Apifox是一款基于web的API设计工具&#xff0c;提供了简洁明了的界面和丰富的…

Debezium系列之:Outbox Event Router

Debezium系列之&#xff1a;Outbox Event Router 一、认识Outbox Event Router二、使用发件箱模式进行可靠的微服务数据交换三、双写问题四、发件箱模式五、基于变更数据捕获的实现六、发件箱表七、发送事件到发件箱八、注册 Debezium 连接器九、主题路由十、Apache Kafka 中的…

交叉编译libcurl libosip libeXosip(包含openssl)

交叉编译libcurl ./configure --with-ssl/home/zx/zxapp/openssl-1.1.0l/output --without-zlib --enable-shared --enable-static --hostarm-linux-gnueabihf CCarm-linux-gnueabihf-gcc --prefix$PWD/build 交叉编译openssl ./config no-asm shared -fPIC --prefix/home/…

ColorUI 全网最全使用文档(建议收藏)

Color UI 我想大家都知晓吧&#xff0c;我就不过多阐述了&#xff0c;是 文晓港 大佬开发的一款适应于H5、微信小程序、安卓、ios、支付宝的高颜值&#xff0c;高度自定义的 Css 组件库.&#xff0c;属于出道即巅峰的史诗级大作&#xff0c;众所周知&#xff0c;万物皆可 Color…

【CEEMDAN-CNN-LSTM】完备集合经验模态分解-卷积神经长短时记忆神经网络研究(Python代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

【雕爷学编程】Arduino动手做(115)---HB100多普勒雷达模块

37款传感器与执行器的提法&#xff0c;在网络上广泛流传&#xff0c;其实Arduino能够兼容的传感器模块肯定是不止这37种的。鉴于本人手头积累了一些传感器和执行器模块&#xff0c;依照实践出真知&#xff08;一定要动手做&#xff09;的理念&#xff0c;以学习和交流为目的&am…

思科交换机与路由器基础命令(二)

作者&#xff1a;Insist-- 个人主页&#xff1a;insist--个人主页 作者会持续更新网络知识和python基础知识&#xff0c;期待你的关注 目录 一、静态路由与默认路由配置命令 1、静态路由 2、默认路由 3、查看路由表 三、使用ping命令测试连通性 1、排除物理故障&#xff…

Revit AVF纹理UV处理

这一周结束得太快了……在我们进入周末之前&#xff0c;这里有一些引人注目的话题&#xff1a; 使用 AVF 解释纹理 UV 映射人体细胞的详细 3D 模型 推荐&#xff1a;用 NSDT设计器 快速搭建可编程3D场景。 1、使用 AVF 解释纹理 UV 映射 不久前在 Revit API 讨论论坛中提出了…

发现一个高颜值流程图 - 亿图图示

今天给各位小伙伴们测试了一款高颜值的流程图制作工具——亿图图示。 对了&#xff0c;它不仅可以制作流程图&#xff0c;还可以制作思维导图、组织结构图、泳道图等等哦。接下来让我们一起测试学习下吧 一、简单介绍 亿图图示&#xff08;Wondershare EdrawMax&#xff09;是…

Vue 项目 实现阻止浏览器记住密码功能

前言 通常浏览器会主动识别密码表单&#xff0c;在你登录成功之后提示保存密码 &#xff0c; 密码保存到浏览器的 密码管理器中 ( 如下是谷歌浏览器 ) 这种行为是浏览器的行为 &#xff0c;这种操作也是为了方便用户的使用 现在的一个需求是要阻止这个保存密码的弹窗提示 实现…

为什么中国一有创新,就被说套壳?

今天来说点有意思的。 大家有没有发现一个现象&#xff1f;无论是2021年的鸿蒙系统&#xff0c;还是2023年的文心一言。每次中国科技有比较重大&#xff0c;具有独创性&#xff0c;且能吸引舆论关注的创新之后&#xff0c;似乎注定会出现一种言论&#xff1a;这东西啊&#xff…

redis缓存设计-Redis(七)

上篇文章介绍了redisCluster。 redis集群-Redis&#xff08;六&#xff09;https://blog.csdn.net/ke1ying/article/details/131217674 高并发缓存应对策略 缓存穿透 正常情况下&#xff0c;用户访问某条数据&#xff0c;第一次从数据库获取&#xff0c;后面会set进缓存&…