# code 5.4 使用Keras实现异或网络
import numpy as np
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Activation
from tensorflow.keras.optimizers import SGD
x_train = np.array([
[0, 0],
[0, 1],
[1, 0],
[1, 1]
])
y_train = np.array([
[0],
[1],
[1],
[0]
])
model = Sequential()
num_neurons = 10
model.add(Dense(num_neurons, input_dim=2))
model.add(Activation('relu'))
model.add(Dense(1))
model.add(Activation('sigmoid'))
model.summary()
sgd = SGD(lr=0.1)
model.compile(loss='binary_crossentropy', optimizer=sgd, metrics=['accuracy'])
model.fit(x_train, y_train, epochs=100)
model.predict(x_train)
执行后报错:
_message.Message._CheckCalledFromGeneratedFile()
TypeError: Descriptors cannot not be created directly.
If this call came from a _pb2.py file, your generated code is out of date and must be regenerated with protoc >= 3.19.0.
If you cannot immediately regenerate your protos, some other possible workarounds are:
1. Downgrade the protobuf package to 3.20.x or lower.
2. Set PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python (but this will use pure-Python parsing and will be much slower).
More information: https://developers.google.com/protocol-buffers/docs/news/2022-05-06#python-updates
Process finished with exit code 1
解决方法:
pip3 install --upgrade protobuf==3.20.1
提示安装的scipy的版本太高了,按照提示继续降级: pip3 install --upgrade scipy==1.4.1
再次运行代码
完成