数据处理
1.导入数据(.csv)
能导入绝大所数形式的格式文件
ex52<-read.table("C:\\Users\\33035\\Desktop\\习题5.2数据.txt",header=T,fileEncoding = 'GBK')
#header :T:表示留第一行
#fileEncoding:有中文时最好改为GBK
2.对数据切片获取
ex_52<-ex52[,c(2,4,6,8)]#取这几列做成list
ex_ROAD<-t(ex_52)
3.把一行变一列数据
ex_52data<-as.vector(t(ex_52))
4. 将数据做成时间序列ts
ex_52series<-ts(ex_52data,start = 1750,frequency = 1)
#参数1:数据
#start:从1750开始
#frequency=1:步进为一年
数据处理已经完成,下面进行时序分析
1.画时序图(初步直观感受时间序列的特性)
plot(ex_52series,type="o")
看平稳性和白噪声(直观不科学)
非平稳性:有周期性和趋势性
如果存在周期性,那么图像就会有周期性波动,
趋势性:就是有单调性趋势
2. 数据说话:ADF单位根法进行平稳性检验
aTSA::adf.test(ex_52series)#adf检验
结果:
Augmented Dickey-Fuller Test
alternative: stationary
Type 1: no drift no trend
lag ADF p.value
[1,] 0 -14.52 0.06
[2,] 1 -12.61 0.01
[3,] 2 -14.73 0.06
[4,] 3 -8.42 0.06
Type 2: with drift no trend
lag ADF p.value
[1,] 0 -14.45 0.06
[2,] 1 -12.54 0.01
[3,] 2 -14.65 0.06
[4,] 3 -8.37 0.01
Type 3: with drift and trend
lag ADF p.value
[1,] 0 -14.38 0.06
[2,] 1 -12.48 0.06
[3,] 2 -14.64 0.06
[4,] 3 -8.41 0.01
----
Note: in fact, p.value = 0.01 means p.value <= 0.06
3种类型的ADF检验结果,但我们只需要关注最后的 means p.value <= 0.06 即可,只要<0.05即显著,什么显著呢?(不同假设,就有不同类型的显著)平稳性显著
3.显然不显著,那么就进行差分(逐步差分,每步差分都要进行白噪声检验,避免过差分)
如果是存在周期性就以周期T为步数,作为T步差分
delatex_52series<-diff(ex_52series)#做一阶一步差分
3.1进行白噪声检验(延迟阶数24内就行,因为只需要推翻短期相关性)
#白噪声检验
for(i in 1:4){
Box=Box.test(delatex_52series,lag = 3*i,type="Ljung-Box")
print(Box)}
#通过白噪声检验,表示该序列纯随机序列(推翻短期相关性即可)
平稳序列具有短期相关性,只要短期都不相关,那么久处处不相关了
#白噪声和ACF和PACF其实都是在说相关性
#P<0.5白噪声不显著
#得到了平稳非白噪声序列,进入定阶段环节
结果:
Box-Ljung test
data: delatex_52series
X-squared = 20.982, df = 3, p-value = 0.0001062
Box-Ljung test
data: delatex_52series
X-squared = 45.155, df = 6, p-value = 4.359e-08
Box-Ljung test
data: delatex_52series
X-squared = 49.727, df = 9, p-value = 1.212e-07
Box-Ljung test
data: delatex_52series
X-squared = 50.516, df = 12, p-value = 1.134e-06
看P值即可,看所有的K,只要小于<0.05就表示非白噪声.很显然都是非白噪声,那么表示差分后还具有研究价值
4.得到平稳和非白噪声序列,那么就能进入定阶阶段
定阶阶段:直观:ACF (q阶截尾)和PACF(p阶截尾):定阶只看截尾(横坐标:为延迟期数
纵坐标:为两个时间点的相关系数)
acf(delatex_52series)#拖尾
pacf(delatex_52series)#3阶截尾
结果:
数据:AIC 和BIC准则:要求是找出AIC和BIC的max值时对应的阶数(p,q)(原理是阶数越高,描述得越详细越符合现实,但是参数会变多,会增加难度,所以就是让阶数合理,就是让AIC和BIC的式子达到最大值)
#数据定阶段AIC和BIC
#选取最大的AIC或者BIc值的模型,小心于系数要大于2标准差,才是显著有关系(非0)
install.packages('forecast')
library(forecast)
auto.arima(delatex_52series,max.p=6,max.q=6,ic="aic")#选择AR(3)模型
最大的p值 ,最大的q值:一般都=6即可,默认为5,ic:aic bic 还有另外一个不需要理
结果:告诉我要选AR(3),ARIMA(p(看pacf),d(阶数),q(看pac)),另外会给出3个系数,下面是s.e是
样本标准差,这里要保证系数要大于2*样本标准差,不然表示相关关系不显著。
结果:
Series: delatex_52series
ARIMA(3,0,0) with zero mean
Coefficients:
ar1 ar2 ar3
-0.7603 -0.7078 -0.5705
s.e. 0.0818 0.0850 0.0816
sigma^2 = 30.25: log likelihood = -308.58
AIC=625.15 AICc=625.58 BIC=635.53
这里就已经是选好了模型了。下面要做的就是进行模型的拟合和模型的显著性检验
5.模型拟合:
#有差分运算时采用有漂移项预测更准确Arima
#无差分运算时用arima
f1<-arima(delatex_52series,order=c(3,0,0))
结果:(与上面AIC定阶一样,不过这是知道阶数才用的,不知道阶数检验用上面的来拟合)
> f1<-arima(delatex_52series,order=c(3,0,0))
> f1
Call:
arima(x = delatex_52series, order = c(3, 0, 0))
Coefficients:
ar1 ar2 ar3 intercept
-0.7603 -0.7078 -0.5705 0.0186
s.e. 0.0818 0.0850 0.0816 0.1815
sigma^2 estimated as 29.34: log likelihood = -308.57, aic = 627.14
Arima的最后一个参数改为T,即可。其实区别就在这个参数而已,但是Arima拟合的模型对象不能作为LB检验的对象,arima可以。
6.模型的有效的显著检验(首先我们拟合出来的模型会产生一个新时序,与旧时序的误差,我们拿这误差来分析,显然模型有效就代表能百分百拟合旧序列,也就是说新时序和旧时序是一样的。误差全为随机误差,也就是白噪声序列,那么只要证明它是白噪声序列即可说明模型有效。证明白噪声序列的话有BOX、Q检验和Q检验的加强版(LB检验),我们使用LB检验)
aTSA::ts.diag(f1)
第一acp和第二个图pacp:如果模型不能通过显著性检验,就可以重新定阶段
第三个图:残差序列白噪声检验图,x为lag,y为Q统计量的P值,要都大于0.05才能说明是白噪声
第四个图:QQ图,y是正态分布的概论分布值,x为残差的概论分布值,只要点集中在y=x,就说明残差服从正态分布。正态分布是白噪声序列的特征
7.发现模型有效之后,就可以拿来预测了。
#拟合好模型后可以进行预测了
library(forecast)
fore<-forecast(f1,h=5)#预测前五期的数据
fore
plot(fore,lty=2)#虚线
Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
1850 -1.56005365 -8.501169 5.381062 -12.175574 9.055467
1851 -3.18400834 -11.903549 5.535532 -16.519395 10.151378
1852 4.15225821 -4.613679 12.918195 -9.254086 17.558602
1853 0.04340675 -8.734613 8.821427 -13.381416 13.468230
1854 -1.09900488 -10.476245 8.278235 -15.440256 13.242246
蓝线是点估计 深色为80%置信区间 浅色为95%的置信区间
代码汇总:(有点不符合上述流程,懒得改了)
ex52<-read.table("C:\\Users\\33035\\Desktop\\习题5.2数据.txt",header=T,fileEncoding = 'GBK')
ex_52<-ex52[,c(2,4,6,8)]
ex_ROAD<-t(ex_52)
ex_52data<-as.vector(t(ex_52))
ex_52series<-ts(ex_52data,start = 1750,frequency = 1)
plot(ex_52series,type="o")
delatex_52series<-diff(ex_52series)#做一阶一步差分
plot(delatex_52series,type="o")#画时序图
aTSA::adf.test(delatex_52series)#adf检验
#白噪声检验
for(i in 1:4){
Box=Box.test(delatex_52series,lag = 3*i,type="Ljung-Box")
print(Box)}
#通过白噪声检验,表示该序列纯随机序列(推翻短期相关性即可)
#白噪声和ACF和PACF其实都是在说相关性
#P<0.5白噪声不显著
#得到了平稳非白噪声序列,进入定阶段环节
acf(delatex_52series)#拖尾
pacf(delatex_52series)#3阶截尾,19阶后又出现(有问题得看答案)
#数据定阶段AIC和BIC
#选取最大的AIC或者BIc值的模型,小心于系数要大于2标准差,才是显著有关系(非0)
install.packages('forecast')
library(forecast)
auto.arima(delatex_52series,max.p=6,max.q=6,ic="aic")#选择AR(3)模型
#进行拟合
#ar 和 ma 和arma模型选择(已经知道定价之后)
#有差分运算时采用有漂移项预测更准确Arima
#无差分运算时用arima
f1<-arima(delatex_52series,order=c(3,0,0))
f1
#拟合好模型后可以进行预测了
library(forecast)
fore<-forecast(f1,h=5)#预测前五期的数据
fore
plot(fore,lty=2)#虚线
#进行模型评估
win.graph(width = 5,height = 5)#新建一个画布
aTSA::ts.diag(f1)