JVM基础面试题及原理讲解

news2025/2/13 0:19:18

基本问题

  • 介绍下 Java 内存区域(运行时数据区)
  • Java 对象的创建过程(五步,建议能默写出来并且要知道每一步虚拟机做了什么)
  • 对象的访问定位的两种方式(句柄和直接指针两种方式)

拓展问题

  • String类和常量池
  • 8种基本类型的包装类和常量池

1 概述

对于 Java 程序员来说,在虚拟机自动内存管理机制下,不再需要像C/C++程序开发程序员这样为内一个 new 操作去写对应的 delete/free 操作,不容易出现内存泄漏和内存溢出问题。正是因为 Java 程序员把内存控制权利交给 Java 虚拟机,一旦出现内存泄漏和溢出方面的问题,如果不了解虚拟机是怎样使用内存的,那么排查错误将会是一个非常艰巨的任务。

2 运行时数据区域

Java 虚拟机在执行 Java 程序的过程中会把它管理的内存划分成若干个不同的数据区域。

这些组成部分一些是线程私有的,其他的则是线程共享的。

线程私有的:

  • 程序计数器
  • 虚拟机栈
  • 本地方法栈

线程共享的:

  • 方法区
  • 直接内存

2.1 程序计数器

程序计数器是一块较小的内存空间,可以看作是当前线程所执行的字节码的行号指示器。字节码解释器工作时通过改变这个计数器的值来选取下一条需要执行的字节码指令,分支、循环、跳转、异常处理、线程恢复等功能都需要依赖这个计数器来完。

另外,为了线程切换后能恢复到正确的执行位置,每条线程都需要有一个独立的程序计数器,各线程之间计数器互不影响,独立存储,我们称这类内存区域为“线程私有”的内存。

从上面的介绍中我们知道程序计数器主要有两个作用:

  1. 字节码解释器通过改变程序计数器来依次读取指令,从而实现代码的流程控制,如:顺序执行、选择、循环、异常处理。
  2. 在多线程的情况下,程序计数器用于记录当前线程执行的位置,从而当线程被切换回来的时候能够知道该线程上次运行到哪儿了。

注意:程序计数器是唯不会出现 OutOfMemoryError 的内存区域,它的生命周期随着线程的创建而创建,随着线程的结束而死亡。

2.2 Java 虚拟机栈

与程序计数器一样,Java虚拟机栈也是线程私有的,它的生命周期和线程相同,描述的是 Java 方法执行的内存模型。

Java 内存可以粗糙的区分为堆内存(Heap)和栈内存(Stack)其中栈就是现在说的虚拟机栈,或者说是虚拟机栈中局部变量表部分。 (实际上,Java虚拟机栈是由一个个栈帧组成,而每个栈帧中都拥有局部变量表、操作数栈、动态链接、方法出口信息)

局部变量表主要存放了编译器可知的各种数据类型(boolean、byte、char、short、int、float、long、double)、对象引用(reference类型,它不同于对象本身,可能是一个指向对象起始地址的引用指针,也可能是指向一个代表对象的句柄或其他与此对象相关的位置)。

Java 虚拟机栈会出现两种异常:StackOverFlowError 和 OutOfMemoryError。

  • StackOverFlowError: 若Java虚拟机栈的内存大小不允许动态扩展,那么当线程请求栈的深度超过当前Java虚拟机栈的最大深度的时候,就抛出StackOverFlowError异常。
  • OutOfMemoryError: 若 Java 虚拟机栈的内存大小允许动态扩展,且当线程请求栈时内存用完了,无法再动态扩展了,此时抛出OutOfMemoryError异常。

Java 虚拟机栈也是线程私有的,每个线程都有各自的Java虚拟机栈,而且随着线程的创建而创建,随着线程的死亡而死亡。

2.3 本地方法栈

和虚拟机栈所发挥的作用非常相似,区别是: 虚拟机栈为虚拟机执行 Java 方法 (也就是字节码)服务,而本地方法栈则为虚拟机使用到的 Native 方法服务。 在 HotSpot 虚拟机中和 Java 虚拟机栈合二为一。

本地方法被执行的时候,在本地方法栈也会创建一个栈帧,用于存放该本地方法的局部变量表、操作数栈、动态链接、出口信息。

方法执行完毕后相应的栈帧也会出栈并释放内存空间,也会出现 StackOverFlowError 和 OutOfMemoryError 两种异常。

2.4 堆

Java 虚拟机所管理的内存中最大的一块,Java 堆是所有线程共享的一块内存区域,在虚拟机启动时创建。此内存区域的唯一目的就是存放对象实例,几乎所有的对象实例以及数组都在这里分配内存。

Java 堆是垃圾收集器管理的主要区域,因此也被称作GC堆(Garbage Collected Heap).从垃圾回收的角度,由于现在收集器基本都采用分代垃圾收集算法,所以Java堆还可以细分为:新生代和老年代:再细致一点有:Eden空间、From Survivor、To Survivor空间等。进一步划分的目的是更好地回收内存,或者更快地分配内存。

在 JDK 1.8中移除整个永久代,取而代之的是一个叫元空间(Metaspace)的区域(永久代使用的是JVM的堆内存空间,而元空间使用的是物理内存,直接受到本机的物理内存限制)。

2.5 方法区

方法区与 Java 堆一样,是各个线程共享的内存区域,它用于存储已被虚拟机加载的类信息、常量、静态变量、即时编译器编译后的代码等数据。虽然Java虚拟机规范把方法区描述为堆的一个逻辑部分,但是它却有一个别名叫做 Non-Heap(非堆),目的应该是与 Java 堆区分开来。

HotSpot 虚拟机中方法区也常被称为 “永久代”,本质上两者并不等价。仅仅是因为 HotSpot 虚拟机设计团队用永久代来实现方法区而已,这样 HotSpot 虚拟机的垃圾收集器就可以像管理 Java 堆一样管理这部分内存了。但是这并不是一个好主意,因为这样更容易遇到内存溢出问题。

相对而言,垃圾收集行为在这个区域是比较少出现的,但并非数据进入方法区后就“永久存在”了。

2.6 运行时常量池

运行时常量池是方法区的一部分。Class 文件中除了有类的版本、字段、方法、接口等描述信息外,还有常量池信息(用于存放编译期生成的各种字面量和符号引用)

既然运行时常量池时方法区的一部分,自然受到方法区内存的限制,当常量池无法再申请到内存时会抛出 OutOfMemoryError 异常。

JDK1.7及之后版本的 JVM 已经将运行时常量池从方法区中移了出来,在 Java 堆(Heap)中开辟了一块区域存放运行时常量池。

2.7 直接内存

直接内存并不是虚拟机运行时数据区的一部分,也不是虚拟机规范中定义的内存区域,但是这部分内存也被频繁地使用。而且也可能导致OutOfMemoryError异常出现。

JDK1.4中新加入的 NIO(New Input/Output) 类,引入了一种基于通道(Channel) 与缓存区(Buffer) 的 I/O 方式,它可以直接使用Native函数库直接分配堆外内存,然后通过一个存储在 Java 堆中的 DirectByteBuffer 对象作为这块内存的引用进行操作。这样就能在一些场景中显著提高性能,因为避免了在 Java 堆和 Native 堆之间来回复制数据。

本机直接内存的分配不会收到 Java 堆的限制,但是,既然是内存就会受到本机总内存大小以及处理器寻址空间的限制。

3 HotSpot 虚拟机对象探秘

通过上面的介绍我们大概知道了虚拟机的内存情况,下面我们来详细的了解一下 HotSpot 虚拟机在 Java 堆中对象分配、布局和访问的全过程。

3.1 对象的创建

下图便是 Java 对象的创建过程,我建议最好是能默写出来,并且要掌握每一步在做什么。

Java创建对象过程

1. 类加载检查: 虚拟机遇到一条 new 指令时,首先将去检查这个指令的参数是否能在常量池中定位到这个类的符号引用,并且检查这个符号引用代表的类是否已被加载过、解析和初始化过。如果没有,那必须先执行相应的类加载过程。

2. 分配内存: 在类加载检查通过后,接下来虚拟机将为新生对象分配内存。对象所需的内存大小在类加载完成后便可确定,为对象分配空间的任务等同于把一块确定大小的内存从 Java 堆中划分出来。分配方式有 “指针碰撞” 和 “空闲列表” 两种,选择那种分配方式由 Java 堆是否规整决定,而Java堆是否规整又由所采用的垃圾收集器是否带有压缩整理功能决定。

内存分配的两种方式:(补充内容,需要掌握)

选择以上两种方式中的哪一种,取决于 Java 堆内存是否规整。而 Java 堆内存是否规整,取决于 GC 收集器的算法是”标记-清除”,还是”标记-整理”(也称作”标记-压缩”),值得注意的是,复制算法内存也是规整的。

内存分配并发问题(补充内容,需要掌握)

在创建对象的时候有一个很重要的问题,就是线程安全,因为在实际开发过程中,创建对象是很频繁的事情,作为虚拟机来说,必须要保证线程是安全的,通常来讲,虚拟机采用两种方式来保证线程安全:

  • CAS+失败重试: CAS 是乐观锁的一种实现方式。所谓乐观锁就是,每次不加锁而是假设没有冲突而去完成某项操作,如果因为冲突失败就重试,直到成功为止。虚拟机采用 CAS 配上失败重试的方式保证更新操作的原子性。
  • TLAB: 为每一个线程预先在 Eden 区分配一块内存。JVM 在给线程中的对象分配内存时,首先在 TLAB 分配,当对象大于TLAB 中的剩余内存或 TLAB 的内存已用尽时,再采用上述的 CAS 进行内存分配。

3. 初始化零值: 内存分配完成后,虚拟机需要将分配到的内存空间都初始化为零值(不包括对象头),这一步操作保证了对象的实例字段在 Java 代码中可以不赋初始值就直接使用,程序能访问到这些字段的数据类型所对应的零值。

4. 设置对象头: 初始化零值完成之后,虚拟机要对对象进行必要的设置,例如这个对象是那个类的实例、如何才能找到类的元数据信息、对象的哈希吗、对象的 GC 分代年龄等信息。 这些信息存放在对象头中。 另外,根据虚拟机当前运行状态的不同,如是否启用偏向锁等,对象头会有不同的设置方式。

5. 执行 init 方法: 在上面工作都完成之后,从虚拟机的视角来看,一个新的对象已经产生了,但从 Java 程序的视角来看,对象创建才刚开始,<init> 方法还没有执行,所有的字段都还为零。所以一般来说,执行 new 指令之后会接着执行 <init> 方法,把对象按照程序员的意愿进行初始化,这样一个真正可用的对象才算完全产生出来。

3.2 对象的内存布局

在 Hotspot 虚拟机中,对象在内存中的布局可以分为3块区域:对象头、实例数据和对齐填充。

Hotspot虚拟机的对象头包括两部分信息,第一部分用于存储对象自身的自身运行时数据(哈希码、GC分代年龄、锁状态标志等等),另一部分是类型指针,即对象指向它的类元数据的指针,虚拟机通过这个指针来确定这个对象是那个类的实例。

实例数据部分是对象真正存储的有效信息,也是在程序中所定义的各种类型的字段内容。

对齐填充部分不是必然存在的,也没有什么特别的含义,仅仅起占位作用。 因为 Hotspot 虚拟机的自动内存管理系统要求对象起始地址必须是8字节的整数倍,换句话说就是对象的大小必须是8字节的整数倍。而对象头部分正好是8字节的倍数(1倍或2倍),因此,当对象实例数据部分没有对齐时,就需要通过对齐填充来补全。

3.3 对象的访问定位

建立对象就是为了使用对象,我们的Java程序通过栈上的 reference 数据来操作堆上的具体对象。对象的访问方式有虚拟机实现而定,目前主流的访问方式有使用句柄和直接指针两种:

1. 句柄: 如果使用句柄的话,那么 Java 堆中将会划分出一块内存来作为句柄池,reference 中存储的就是对象的句柄地址,而句柄中包含了对象实例数据与类型数据各自的具体地址信息。

通过句柄访问对象

2. 直接指针: 如果使用直接指针访问,那么 Java 堆对象的布局中就必须考虑如何放置访问类型数据的相关信息,而 reference 中存储的直接就是对象的地址。

通过直接指针访问对象

这两种对象访问方式各有优势。使用句柄来访问的最大好处是 reference 中存储的是稳定的句柄地址,在对象被移动时只会改变句柄中的实例数据指针,而 reference 本身不需要修改。使用直接指针访问方式最大的好处就是速度快,它节省了一次指针定位的时间开销。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/639670.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Flutter Widget 生命周期 key探究

Widget 在Flutter中&#xff0c;一切皆是Widget&#xff08;组件&#xff09;&#xff0c;Widget的功能是“描述一个UI元素的配置数据”&#xff0c;它就是说&#xff0c;Widget其实并不是表示最终绘制在设备屏幕上的显示元素&#xff0c;它只是描述显示元素的一个配置数据。 …

分库分表 21 招

&#xff08;一&#xff09;好好的系统&#xff0c;为什么要分库分表&#xff1f; 咱们先介绍下在分库分表架构实施过程中&#xff0c;会接触到的一些通用概念&#xff0c;了解这些概念能够帮助理解市面上其他的分库分表工具&#xff0c;尽管它们的实现方法可能存在差异&#…

自动化测试框架seldom

创建项目 | seldom文档 这个框架还是不错的&#xff0c;一直在优化&#xff0c;测试框架里的功能这里都有了。 seldom继承unittest单元测试框架&#xff0c;可以用来做UI和接口自动化项目。 安装 pip install seldom 创建项目 > seldom -P mypro 创建测试用例 # tes…

第8章 维护

文章目录 第8章 维护一、软件交付使用的工作二、软件交付使用的方式1) 直接方式2) 并行方式3) 逐步方式 8.1 软件维护的定义1、软件维护的定义2、软件维护的原因3、软件维护的类型1、改正性维护2、适应性维护3、完善性维护4、预防性维护 8.2 软件维护的特点8.2.1结构化维护和非…

12.异常-Exception|Java学习笔记

文章目录 异常介绍异常体系图一览运行时异常编译异常异常处理异常处理的方式try-catch 异常处理throws 异常处理注意事项和使用细节 自定义异常自定义异常的步骤 throw和throws的区别 异常介绍 基本概念&#xff1a;Java语言中&#xff0c;将程序执行中发生的不正常情况称为“…

【TCP/IP】多进程服务器的实现(进阶) - 多进程服务器模型及代码实现

经过前面的铺垫&#xff0c;我们已经具备实现并发服务器的基础了&#xff0c;接下来让我们尝试将之前的单任务回声服务器改装成多任务并发模式吧&#xff01; 多任务回声服务器模型 在编写代码前&#xff0c;先让我们大致将多任务&#xff08;回声&#xff09;服务器的模型抽象…

mac下部署和访问 Kubernetes 仪表板(Dashboard)

简介 Dashboard 是基于网页的 Kubernetes 用户界面。 你可以使用 Dashboard 将容器应用部署到 Kubernetes 集群中&#xff0c;也可以对容器应用排错&#xff0c;还能管理集群资源。 你可以使用 Dashboard 获取运行在集群中的应用的概览信息&#xff0c;也可以创建或者修改 Kub…

技术分享——隐私计算简介

随着数据规模的不断扩大和网络技术的快速发展&#xff0c;数据安全和隐私保护成为了热门的话题。隐私计算作为一种新兴的数据安全和隐私保护技术&#xff0c;为数据安全和隐私泄露问题提供了新的思路和方法。 2020年10月19日&#xff0c;Gartner发布2021年前沿战略科技趋势&am…

VTK源码编译安装记录与教程(VS2019+QT5.15.2+PCL1.12.1+VTK9.1.0配置,超详细)

因为PCL库&#xff08;傻瓜式安装&#xff09;中自动安装的VTK库并不完整&#xff0c;不支持QT环境的UI界面开发&#xff0c;于是&#xff0c;想用QT在VS2019上开发图形界面程序&#xff0c;需要单独自己通过VTK源码编译安装&#xff0c;再进行配置。本人安装时开发环境已经装好…

2023拒绝行业内卷!八年软件测试月薪30K*16薪行业心得 想入行必看

目前工作做软件测试工作8年&#xff0c;属于高级测试员那个级别吧&#xff01;现在看到各行各业的人都在转行学习软件测试&#xff0c;想给大家一些学习建议和忠告。 很多粉丝都跟我说今年行情很差&#xff0c;找不到工资&#xff0c;真的找不到工作了吗&#xff1f; 我们常在网…

simhash原理以及用python3实现simhash算法详解(附python3源码)

1. 为什么需要Simhash? 传统相似度算法:文本相似度的计算,一般使用向量空间模型(VSM),先对文本分词,提取特征,根据特征建立文本向量,把文本之间相似度的计算转化为特征向量距离的计算,如欧式距离、余弦夹角等。 缺点:大数据情况下复杂度会很高。 Simhash应用场景:…

Graph Learning笔记 - 长尾分布问题

Graph Learning笔记 - 长尾分布问题 分享四篇论文入门图神经网络时的学习笔记。 SL-DSGCN 论文&#xff1a;Investigating and Mitigating Degree-Related Biases in Graph Convolutional Networks 来源&#xff1a;2020CIKM 概要 GCN在图的半监督学习上能取得良好表现&a…

lora,固定模特+固定衣服,怎么实现?

在电商行业&#xff0c;经常会有一个需求&#xff0c;就是把固定的衣服让模型穿上&#xff0c;然后拍很多的图片&#xff0c;放在商品主图、详情页、买家秀...... 人工智能发展到现在&#xff0c;最近aigc也挺热门的&#xff0c;有没有办法用“人工智能”算法就实现这个功能&a…

逆向汇编反汇编——函数分析

add esp,8就是把esp调整到函数调用之前的状态&#xff0c;用以平衡堆栈 默认采用的是cdcall&#xff1a;外平栈 stdcall:内平栈 什么是堆栈平衡&#xff1f; 》原来的堆栈是什么样的&#xff0c;函数调用之后堆栈还是什么样的(即&#xff0c;esp和ebp的值保持不变)&#xf…

掌握Scala数据结构(2)MAP、TUPLE、SET

一、映射 (Map) &#xff08;一&#xff09;不可变映射 1、创建不可变映射 创建不可变映射mp&#xff0c;用键->值的形式 创建不可变映射mp&#xff0c;用(键, 值)的形式 注意&#xff1a;Map是特质&#xff08;Scala里的trait&#xff0c;相当于Java里的interface&#…

git选择指定分支中的指定目录进行合并

指定路径合并 先进入branch A &#xff1a; git checkout branchA 将dir2中的变更转移至branchA&#xff1a; git checkout branchB dir2 所有变更将出现在branchA中的dir2中&#xff0c;检查后提交即可。 git commit -m "sync branchB dir2 to branchA" 也可以…

读财报丨第二增长曲线渐显,但涂鸦智能的未来还看PaaS业务?

2022年以来&#xff0c;全球物联网行业持续低迷&#xff0c;赛道内不少玩家出现业绩下滑&#xff0c;而且陆续传出巨头企业关停相关业务板块的消息。这背后是消费电子行业库存积压&#xff0c;客户需求难以释放等宏观因素&#xff0c;导致IoT领域面临一定的经营困境。 近日&am…

STM32——07-STM32定时器Timer

定时器介绍 软件定时 缺点&#xff1a;不精确、占用 CPU 资源 void Delay500ms () //11.0592MHz { unsigned char i , j , k ; _nop_ (); i 4 ; j 129 ; k 119 ; do { do { while ( -- k ); } while ( -- j ); } while ( -- i ); } 定时器工…

108-Spring的底层原理(下篇)

这里续写上一章博客&#xff08;107章博客&#xff09;&#xff1a; Spring 声明式事务的支持&#xff1a; 编程式事务&#xff1a;在业务代码中添加事务控制代码&#xff0c;这样的事务控制机制就叫做编程式事务 声明式事务&#xff1a;通过xml或者注解配置的方式达到事务…

【Linux】进程间通信(管道)

文章目录 进程通信的目的进程间通信发展进程间通信分类管道System V IPCPOSIX IPC 管道什么是管道管道的读写规则管道的特点&#xff1a;匿名管道处理退出问题命名管道创建一个命名管道匿名管道与命名管道的区别命名管道的打开规则 进程通信的目的 数据传输&#xff1a;一个进程…