首先说明,设备树不可能用来写驱动。
设备树只是用来给内核里的驱动程序,指定硬件的信息。比如LED驱动,在内核的驱动程序里去操作寄存器,但是操作哪一个引脚?这由设备树指定。
需要编写设备树文件(dts: device tree source
),它需要编译为dtb(device tree blob)
文件,内核使用的是dtb
文件。
1.设备树示例:
它对应的dts文件如下:
2. Devicetree格式
2.1 DTS文件的格式
DTS文件布局(layout):
/dts-v1/; // 表示版本
[memory reservations] // 格式为: /memreserve/ <address> <length>;
/ {
[property definitions]
[child nodes]
};
2.2 node的格式
设备树中的基本单元,被称为“node”,其格式为:
[label:] node-name[@unit-address] {
[properties definitions]
[child nodes]
};
label
是标号,可以省略。label
的作用是为了方便地引用node
,比如:
/dts-v1/;
/ {
uart0: uart@fe001000 {
compatible="ns16550";
reg=<0xfe001000 0x100>;
};
};
可以使用下面2种方法来修改uart@fe001000
这个node
:
// 在根节点之外使用label引用node:
&uart0 {
status = “disabled”;
};
或在根节点之外使用全路径:
&{/uart@fe001000} {
status = “disabled”;
};
2.3 properties的格式
简单地说,properties
就是“name=value”,value有多种取值方式。
(1)Property格式1:
[label:] property-name = value;
(2)Property格式2(没有值):
[label:] property-name;
(3)Property取值只有3种:
arrays of cells(1个或多个32位数据, 64位数据使用2个32位数据表示),
string(字符串),
bytestring(1个或多个字节)
示例:
(1)Arrays of cells : cell
就是一个32位的数据,用尖括号包围起来
interrupts = <17 0xc>;
(2)64bit数据使用2个cell来表示,用尖括号包围起来:
clock-frequency = <0x00000001 0x00000000>;
(3)A null-terminated string
(有结束符的字符串),用双引号包围起来:
compatible = "simple-bus";
(4)A bytestring(字节序列) ,用中括号包围起来:
local-mac-address = [00 00 12 34 56 78]; // 每个byte使用2个16进制数来表示
local-mac-address = [000012345678]; // 每个byte使用2个16进制数来表示
(5)可以是各种值的组合, 用逗号隔开:
compatible = "ns16550", "ns8250";
example = <0xf00f0000 19>, "a strange property format";
3. dts文件包含dtsi文件
设备树文件不需要我们从零写出来,内核支持了某款芯片比如imx6ull
,在内核的arch/arm/boot/dts
目录下就有了能用的设备树模板,一般命名为xxxx.dtsi
。“i”表示“include”,被别的文件引用的。
我们使用某款芯片制作出了自己的单板,所用资源跟xxxx.dtsi
是大部分相同,小部分不同,所以需要引脚xxxx.dtsi
并修改。
dtsi
文件跟dts
文件的语法是完全一样的。
dts
中可以包含.h
头文件,也可以包含dtsi
文件,在.h
头文件中可以定义一些宏。
示例:
/dts-v1/;
#include <dt-bindings/input/input.h>
#include "imx6ull.dtsi"
/ {
……
};
4. 常用的属性
4.1 #address-cells、#size-cells
cell
指一个32位的数值,
address-cells
:address要用多少个32位数来表示;
size-cells
:size要用多少个32位数来表示。
比如一段内存,怎么描述它的起始地址和大小?
下例中,address-cells
为1,所以reg
中用1个数来表示地址,即用0x80000000
来表示地址;size-cells
为1,所以reg
中用1个数来表示大小,即用0x20000000
表示大小:
/ {
#address-cells = <1>;
#size-cells = <1>;
memory {
reg = <0x80000000 0x20000000>;
};
};
4.2 compatible
“compatible”表示“兼容”,对于某个LED,内核中可能有A、B、C三个驱动都支持它,那可以这样写:
led {
compatible = “A”, “B”, “C”;
};
内核启动时,就会为这个LED按这样的优先顺序为它找到驱动程序:A、B、C。
根节点下也有compatible
属性,用来选择哪一个“machine desc”:一个内核可以支持machine A,也支持machine B,内核启动后会根据根节点的compatible属性找到对应的machine desc结构体,执行其中的初始化函数。
compatible的值,建议取这样的形式:“manufacturer,model”,即“厂家名,模块名”。
注意:machine desc的意思就是“机器描述”,学到内核启动流程时才涉及。
4.3 model
model
属性与compatible
属性有些类似,但是有差别。
compatible
属性是一个字符串列表,表示可以你的硬件兼容A、B、C等驱动;
model
用来准确地定义这个硬件是什么。
比如根节点中可以这样写:
/ {
compatible = "samsung,smdk2440", "samsung,mini2440";
model = "jz2440_v3";
};
它表示这个单板,可以兼容内核中的“smdk2440”,也兼容“mini2440”。
从compatible
属性中可以知道它兼容哪些板,但是它到底是什么板?用model
属性来明确。
4.4 status
dtsi
文件中定义了很多设备,但是在你的板子上某些设备是没有的。这时你可以给这个设备节点添加一个status
属性,设置为“disabled”:
&uart1 {
status = "disabled";
};
4.5 reg
reg
的本意是registe
r,用来表示寄存器地址。
但是在设备树里,它可以用来描述一段空间。反正对于ARM系统,寄存器和内存是统一编址的,即访问寄存器时用某块地址,访问内存时用某块地址,在访问方法上没有区别。
reg
属性的值,是一系列的“address size”,用多少个32位的数来表示address
和size
,由其父节点的#address-cells
、#size-cells
决定。
示例:
/dts-v1/;
/ {
#address-cells = <1>;
#size-cells = <1>;
memory {
reg = <0x80000000 0x20000000>;
};
};
5. 常用的节点(node)
5.1 根节点
dts
文件中必须有一个根节点:
/dts-v1/;
/ {
model = "SMDK24440";
compatible = "samsung,smdk2440";
#address-cells = <1>;
#size-cells = <1>;
};
根节点中必须有这些属性:
#address-cells // 在它的子节点的reg属性中, 使用多少个u32整数来描述地址(address)
#size-cells // 在它的子节点的reg属性中, 使用多少个u32整数来描述大小(size)
compatible // 定义一系列的字符串, 用来指定内核中哪个machine_desc可以支持本设备
// 即这个板子兼容哪些平台
// uImage : smdk2410 smdk2440 mini2440 ==> machine_desc
model // 咱这个板子是什么
// 比如有2款板子配置基本一致, 它们的compatible是一样的
// 那么就通过model来分辨这2款板子
5.2 CPU节点
一般不需要我们设置,在dtsi文件中都定义好了:
cpus {
#address-cells = <1>;
#size-cells = <0>;
cpu0: cpu@0 {
.......
}
};
5.3 memory节点
芯片厂家不可能事先确定你的板子使用多大的内存,所以memory
节点需要板厂设置,比如:
memory {
reg = <0x80000000 0x20000000>;
};
5.4 chosen节点
我们可以通过设备树文件给内核传入一些参数,这要在chosen
节点中设置bootargs
属性:
chosen {
bootargs = "noinitrd root=/dev/mtdblock4 rw init=/linuxrc console=ttySAC0,115200";
};
6. 内核对设备树的处理
从源代码文件dts
文件开始,设备树的处理过程为:
① dts
在PC机上被编译为dtb
文件;
② u-boot
把dtb
文件传给内核;
③ 内核解析dtb
文件,把每一个节点都转换为device_node
结构体;
④ 对于某些device_node
结构体,会被转换为platform_device
结构体。
6.1 dtb中每一个节点都被转换为device_node结构体
根节点被保存在全局变量of_root
中,从of_root
开始可以访问到任意节点。
6.2 哪些设备树节点会被转换为platform_device
(1)根节点下含有compatile属性的子节点
(2)含有特定compatile
属性的节点的子节点
如果一个节点的compatile
属性,它的值是这4者之一:“simple-bus”,“simple-mfd”,“isa”,“arm,amba-bus”,
那么它的子结点(需含compatile
属性)也可以转换为platform_device
。
(3)总线I2C
、SPI
节点下的子节点:不转换为platform_device
某个总线下到子节点,应该交给对应的总线驱动程序来处理, 它们不应该被转换为platform_device
。
比如以下的节点中:
/mytest
会被转换为platform_device
, 因为它兼容"simple-bus";它的子节点/mytest/mytest@0
也会被转换为platform_device
/i2c
节点一般表示i2c
控制器, 它会被转换为platform_device
, 在内核中有对应的platform_driver
;
/i2c/at24c02
节点不会被转换为platform_device
, 它被如何处理完全由父节点的platform_driver
决定, 一般是被创建为一个i2c_client
。
类似的也有/spi
节点, 它一般也是用来表示SPI
控制器, 它会被转换为platform_device
, 在内核中有对应的platform_driver
;
/spi/flash@0
节点不会被转换为platform_device
, 它被如何处理完全由父节点的platform_driver
决定, 一般是被创建为一个spi_device
。
/ {
mytest {
compatile = "mytest", "simple-bus";
mytest@0 {
compatile = "mytest_0";
};
};
i2c {
compatile = "samsung,i2c";
at24c02 {
compatile = "at24c02";
};
};
spi {
compatile = "samsung,spi";
flash@0 {
compatible = "winbond,w25q32dw";
spi-max-frequency = <25000000>;
reg = <0>;
};
};
};
6.3 怎么转换为platform_device
内核处理设备树的函数调用过程,这里不去分析;我们只需要得到如下结论:
(1)platform_device
中含有resource
数组, 它来自device_node
的reg
, interrupts
属性;
(2)platform_device.dev.of_node
指向device_node
, 可以通过它获得其他属性
7. platform_device如何与platform_driver配对
从设备树转换得来的platform_device
会被注册进内核里,以后当我们每注册一个platform_driver
时,它们就会两两确定能否配对,如果能配对成功就调用platform_driver
的probe
函数。
(1)最先比较:是否强制选择某个driver
比较platform_device.driver_override
和platform_driver.driver.name
可以设置platform_device
的driver_override
,强制选择某个platform_driver
。
(2)然后比较:设备树信息
比较:platform_device.dev.of_node
和platform_driver.driver.of_match_table
。
由设备树节点转换得来的platform_device
中,含有一个结构体:of_node
。它的类型如下:
如果一个platform_driver
支持设备树,它的platform_driver.driver.of_match_table
是一个数组,类型如下:
使用设备树信息来判断dev
和drv
是否配对时,
首先,如果of_match_table
中含有compatible
值,就跟dev
的compatile
属性比较,若一致则成功,否则返回失败;
其次,如果of_match_table
中含有type
值,就跟dev
的device_type
属性比较,若一致则成功,否则返回失败;
最后,如果of_match_table
中含有name
值,就跟dev
的name
属性比较,若一致则成功,否则返回失败。
而设备树中建议不再使用devcie_type
和name
属性,所以基本上只使用设备节点的compatible
属性来寻找匹配的platform_driver
。
(3)接下来比较:platform_device_id
比较platform_device.name
和platform_driver.id_table[i].name
,id_table
中可能有多项。
platform_driver.id_table
是“platform_device_id”指针,表示该drv
支持若干个device
,它里面列出了各个device
的{.name, .driver_data}
,其中的“name”表示该drv
支持的设备的名字,driver_data
是些提供给该device
的私有数据。
(4)最后比较:platform_device.name
和platform_driver.driver.name
platform_driver.id_table
可能为空,这时可以根据platform_driver.driver.name
来寻找同名的platform_device
。
一个图概括所有的配对过程