设备树的引入及简明教程

news2025/1/23 20:01:07

首先说明,设备树不可能用来写驱动。

设备树只是用来给内核里的驱动程序,指定硬件的信息。比如LED驱动,在内核的驱动程序里去操作寄存器,但是操作哪一个引脚?这由设备树指定。

需要编写设备树文件(dts: device tree source),它需要编译为dtb(device tree blob)文件,内核使用的是dtb文件。

1.设备树示例:

在这里插入图片描述
它对应的dts文件如下:
在这里插入图片描述

2. Devicetree格式

2.1 DTS文件的格式

DTS文件布局(layout):

/dts-v1/;                // 表示版本
[memory reservations]    // 格式为: /memreserve/ <address> <length>;
/ {
    [property definitions]
    [child nodes]
};

2.2 node的格式

设备树中的基本单元,被称为“node”,其格式为:

[label:] node-name[@unit-address] {
    [properties definitions]
    [child nodes]
};

label是标号,可以省略。label的作用是为了方便地引用node,比如:

/dts-v1/;
/ {
	uart0: uart@fe001000 {
        compatible="ns16550";
        reg=<0xfe001000 0x100>;
	};
};

可以使用下面2种方法来修改uart@fe001000这个node

// 在根节点之外使用label引用node:
&uart0 {
    status = “disabled”;
};
或在根节点之外使用全路径:
&{/uart@fe001000}  {
    status = “disabled”;
};

2.3 properties的格式

简单地说,properties就是“name=value”,value有多种取值方式。
(1)Property格式1:

[label:] property-name = value;

(2)Property格式2(没有值):

[label:] property-name;

(3)Property取值只有3种:

arrays of cells(1个或多个32位数据, 64位数据使用2个32位数据表示), 
string(字符串), 
bytestring(1个或多个字节)

示例:
(1)Arrays of cells : cell就是一个32位的数据,用尖括号包围起来

interrupts = <17 0xc>;

(2)64bit数据使用2个cell来表示,用尖括号包围起来:

clock-frequency = <0x00000001 0x00000000>;

(3)A null-terminated string (有结束符的字符串),用双引号包围起来:

compatible = "simple-bus";

(4)A bytestring(字节序列) ,用中括号包围起来:

local-mac-address = [00 00 12 34 56 78];  // 每个byte使用2个16进制数来表示
local-mac-address = [000012345678];       // 每个byte使用2个16进制数来表示

(5)可以是各种值的组合, 用逗号隔开:

compatible = "ns16550", "ns8250";
example = <0xf00f0000 19>, "a strange property format";

3. dts文件包含dtsi文件

设备树文件不需要我们从零写出来,内核支持了某款芯片比如imx6ull,在内核的arch/arm/boot/dts目录下就有了能用的设备树模板,一般命名为xxxx.dtsi。“i”表示“include”,被别的文件引用的。

我们使用某款芯片制作出了自己的单板,所用资源跟xxxx.dtsi是大部分相同,小部分不同,所以需要引脚xxxx.dtsi并修改。

dtsi文件跟dts文件的语法是完全一样的。

dts中可以包含.h头文件,也可以包含dtsi文件,在.h头文件中可以定义一些宏。
示例:

/dts-v1/;

#include <dt-bindings/input/input.h>
#include "imx6ull.dtsi"

/ {
……
};

4. 常用的属性

4.1 #address-cells、#size-cells

cell指一个32位的数值,
address-cells:address要用多少个32位数来表示;
size-cells:size要用多少个32位数来表示。

比如一段内存,怎么描述它的起始地址和大小?
下例中,address-cells为1,所以reg中用1个数来表示地址,即用0x80000000来表示地址;size-cells为1,所以reg中用1个数来表示大小,即用0x20000000表示大小:

/ {
#address-cells = <1>;
#size-cells = <1>;
memory {
reg = <0x80000000 0x20000000>;
    };
};

4.2 compatible

“compatible”表示“兼容”,对于某个LED,内核中可能有A、B、C三个驱动都支持它,那可以这样写:

led {
compatible = “A”, “B”, “C”;
};

内核启动时,就会为这个LED按这样的优先顺序为它找到驱动程序:A、B、C。

根节点下也有compatible属性,用来选择哪一个“machine desc”:一个内核可以支持machine A,也支持machine B,内核启动后会根据根节点的compatible属性找到对应的machine desc结构体,执行其中的初始化函数。

compatible的值,建议取这样的形式:“manufacturer,model”,即“厂家名,模块名”。

注意:machine desc的意思就是“机器描述”,学到内核启动流程时才涉及。

4.3 model

model属性与compatible属性有些类似,但是有差别。

compatible属性是一个字符串列表,表示可以你的硬件兼容A、B、C等驱动;
model用来准确地定义这个硬件是什么。

比如根节点中可以这样写:

/ {
	compatible = "samsung,smdk2440", "samsung,mini2440";
	model = "jz2440_v3";
};

它表示这个单板,可以兼容内核中的“smdk2440”,也兼容“mini2440”。
compatible属性中可以知道它兼容哪些板,但是它到底是什么板?用model属性来明确。

4.4 status

dtsi文件中定义了很多设备,但是在你的板子上某些设备是没有的。这时你可以给这个设备节点添加一个status属性,设置为“disabled”:

&uart1 {
      status = "disabled";
};

4.5 reg

reg的本意是register,用来表示寄存器地址。

但是在设备树里,它可以用来描述一段空间。反正对于ARM系统,寄存器和内存是统一编址的,即访问寄存器时用某块地址,访问内存时用某块地址,在访问方法上没有区别。

reg属性的值,是一系列的“address size”,用多少个32位的数来表示addresssize,由其父节点的#address-cells#size-cells决定。

示例:

/dts-v1/;
/ {
	#address-cells = <1>;
	#size-cells = <1>; 
	memory {
	reg = <0x80000000 0x20000000>;
	};
};

5. 常用的节点(node)

5.1 根节点

dts文件中必须有一个根节点:

/dts-v1/;
/ {
	model = "SMDK24440";
	compatible = "samsung,smdk2440";
	
	#address-cells = <1>;
	#size-cells = <1>; 
};

根节点中必须有这些属性:

#address-cells // 在它的子节点的reg属性中, 使用多少个u32整数来描述地址(address)
#size-cells   // 在它的子节点的reg属性中, 使用多少个u32整数来描述大小(size)
compatible   // 定义一系列的字符串, 用来指定内核中哪个machine_desc可以支持本设备
            // 即这个板子兼容哪些平台 
            // uImage : smdk2410 smdk2440 mini2440     ==> machine_desc         
                 
model       // 咱这个板子是什么
            // 比如有2款板子配置基本一致, 它们的compatible是一样的
            // 那么就通过model来分辨这2款板子

5.2 CPU节点

一般不需要我们设置,在dtsi文件中都定义好了:

cpus {
		#address-cells = <1>;
		#size-cells = <0>;

		cpu0: cpu@0 {
		    .......
        }
};

5.3 memory节点

芯片厂家不可能事先确定你的板子使用多大的内存,所以memory节点需要板厂设置,比如:

memory {
reg = <0x80000000 0x20000000>;
};

5.4 chosen节点

我们可以通过设备树文件给内核传入一些参数,这要在chosen节点中设置bootargs属性:

chosen {
	bootargs = "noinitrd root=/dev/mtdblock4 rw init=/linuxrc console=ttySAC0,115200";
};

6. 内核对设备树的处理

从源代码文件dts文件开始,设备树的处理过程为:
在这里插入图片描述
dts在PC机上被编译为dtb文件;
u-bootdtb文件传给内核;
③ 内核解析dtb文件,把每一个节点都转换为device_node结构体;
④ 对于某些device_node结构体,会被转换为platform_device结构体。

6.1 dtb中每一个节点都被转换为device_node结构体

在这里插入图片描述
根节点被保存在全局变量of_root中,从of_root开始可以访问到任意节点。

6.2 哪些设备树节点会被转换为platform_device

(1)根节点下含有compatile属性的子节点

(2)含有特定compatile属性的节点的子节点
如果一个节点的compatile属性,它的值是这4者之一:“simple-bus”,“simple-mfd”,“isa”,“arm,amba-bus”,

那么它的子结点(需含compatile属性)也可以转换为platform_device

(3)总线I2CSPI节点下的子节点:不转换为platform_device
某个总线下到子节点,应该交给对应的总线驱动程序来处理, 它们不应该被转换为platform_device

比如以下的节点中:
/mytest会被转换为platform_device, 因为它兼容"simple-bus";它的子节点/mytest/mytest@0 也会被转换为platform_device

/i2c节点一般表示i2c控制器, 它会被转换为platform_device, 在内核中有对应的platform_driver;
/i2c/at24c02节点不会被转换为platform_device, 它被如何处理完全由父节点的platform_driver决定, 一般是被创建为一个i2c_client

类似的也有/spi节点, 它一般也是用来表示SPI控制器, 它会被转换为platform_device, 在内核中有对应的platform_driver;

/spi/flash@0节点不会被转换为platform_device, 它被如何处理完全由父节点的platform_driver决定, 一般是被创建为一个spi_device

/ {
	  mytest {
		  compatile = "mytest", "simple-bus";
		  mytest@0 {
				compatile = "mytest_0";
		  };
	  };
	  
	  i2c {
		  compatile = "samsung,i2c";
		  at24c02 {
				compatile = "at24c02";                      
		  };
	  };

	  spi {
		  compatile = "samsung,spi";              
		  flash@0 {
				compatible = "winbond,w25q32dw";
				spi-max-frequency = <25000000>;
				reg = <0>;
			  };
	  };
  };

6.3 怎么转换为platform_device

内核处理设备树的函数调用过程,这里不去分析;我们只需要得到如下结论:
(1)platform_device中含有resource数组, 它来自device_nodereg, interrupts属性;
(2)platform_device.dev.of_node指向device_node, 可以通过它获得其他属性

7. platform_device如何与platform_driver配对

从设备树转换得来的platform_device会被注册进内核里,以后当我们每注册一个platform_driver时,它们就会两两确定能否配对,如果能配对成功就调用platform_driverprobe函数。

在这里插入图片描述
(1)最先比较:是否强制选择某个driver
比较platform_device.driver_overrideplatform_driver.driver.name
可以设置platform_devicedriver_override,强制选择某个platform_driver
(2)然后比较:设备树信息
比较:platform_device.dev.of_nodeplatform_driver.driver.of_match_table

由设备树节点转换得来的platform_device中,含有一个结构体:of_node。它的类型如下:
在这里插入图片描述
如果一个platform_driver支持设备树,它的platform_driver.driver.of_match_table是一个数组,类型如下:
在这里插入图片描述
使用设备树信息来判断devdrv是否配对时,
首先,如果of_match_table中含有compatible值,就跟devcompatile属性比较,若一致则成功,否则返回失败;

其次,如果of_match_table中含有type值,就跟devdevice_type属性比较,若一致则成功,否则返回失败;

最后,如果of_match_table中含有name值,就跟devname属性比较,若一致则成功,否则返回失败。

而设备树中建议不再使用devcie_typename属性,所以基本上只使用设备节点的compatible属性来寻找匹配的platform_driver

(3)接下来比较:platform_device_id
比较platform_device.nameplatform_driver.id_table[i].nameid_table中可能有多项。

platform_driver.id_table是“platform_device_id”指针,表示该drv支持若干个device,它里面列出了各个device{.name, .driver_data},其中的“name”表示该drv支持的设备的名字,driver_data是些提供给该device的私有数据。

(4)最后比较:platform_device.nameplatform_driver.driver.name
platform_driver.id_table可能为空,这时可以根据platform_driver.driver.name来寻找同名的platform_device

一个图概括所有的配对过程
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/632384.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【协议】NVMe over RoCE |nvmeof

什么是nvme nvme ssd和普通ssd区别 ssd是固态硬盘&#xff0c;普通的ssd配的是SATA口&#xff08;AHCI协议&#xff09;&#xff0c;nvme ssd配的是PCIe口&#xff08;nvme传输协议&#xff09; 相比普通SSD的SATA口&#xff0c;nvme的PCIe口有巨大的性能优势。 更多详情见&…

HTTP超详细教程

1&#xff0c;HTTP协议 1.1&#xff0c;HTTP简述 HTTP全称为超文本传输协议&#xff0c;是一种应用比较广泛的应用层协议。 那何为超文本&#xff1f; 超文本指的是传输的内容不仅仅是文本&#xff0c;比如 html&#xff0c;css&#xff0c;javaScript 等数据&#xff0c;还…

SQL使用技巧

1、行列转换&#xff1a; decode(条件,值1,返回值1,值2,返回值2,...值n,返回值n,缺省值); select decode(sign(变量1-变量2),-1,变量1,变量2) from dual; --取较小值 sign()函数根据某个值是0、正数还是负数&#xff0c;分别返回0、1、-1 例如: 变量110&#xff0c;变量220 则s…

中间件定义

中间件(middleware)是基础软件的一大类&#xff0c;属于可复用的软件范畴。中间件在操作系统软件&#xff0c;网络和数据库之上&#xff0c;应用软件之下&#xff0c;总的作用是为处于自己上层的应用软件提供运行于开发的环境&#xff0c;帮助用户灵活、高效的开发和集成复杂的…

CTFHub | 读取源代码

0x00 前言 CTFHub 专注网络安全、信息安全、白帽子技术的在线学习&#xff0c;实训平台。提供优质的赛事及学习服务&#xff0c;拥有完善的题目环境及配套 writeup &#xff0c;降低 CTF 学习入门门槛&#xff0c;快速帮助选手成长&#xff0c;跟随主流比赛潮流。 0x01 题目描述…

互斥量实现原理探究

文章目录 1. 如何实现线程的加锁和解锁2. 封装一个锁3. 可重入和线程安全3.1 可重入与线程安全联系3.2 可重入与线程安全区别 4. 常见锁概念4.1 死锁4.2 代码实现4.3 死锁四个必要条件 1. 如何实现线程的加锁和解锁 经过上一篇文章的例子&#xff0c;大家已经意识到单纯的 i 或…

快速在linux上配置python3.x的环境以及可能报错的解决方案(python其它版本可同样方式安装)

一. linux安装python3.x 下面案例是安装python3.9 步骤&#xff0c;也可以指定其他版本安装 步骤1&#xff1a;安装系统依赖&#xff08;重要&#xff09; 这一步不执行&#xff0c;后面各种错误。 yum -y install zlib-devel bzip2-devel openssl-devel ncurses-devel sql…

【Python小技巧】更换python版本解决了plt.show()不显示图像的问题

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、df.plot() 显示不出图像&#xff1f;二、换个python版本问题解决总结 前言 from matplotlib import pyplot as plt kdata.plot(xtrade_time, y[close,BOLL…

ThreadPoolExecutor线程池

文章目录 一、ThreadPool线程池状态二、ThreadPoolExecutor构造方法三、Executors3.1 固定大小线程池3.2 带缓冲线程池3.3 单线程线程池 四、ThreadPoolExecutor4.1 execute(Runnable task)方法使用4.2 submit()方法4.3 invokeAll()4.4 invokeAny()4.5 shutdown()4.6 shutdownN…

SpringBoot-Actuator健康检查-打印日志改造应用策略模式+简单工厂

类图 包结构 代码实例 pom <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation"http://maven.apac…

【MySQL 数据库】10、MySQL 的触发器

MySQL 的触发器 零、存储函数一、触发器二、触发器的使用和语法 零、存储函数 存储函数是有返回值的存储过程存储函数的参数只能是 IN 类型 characteristic 说明&#xff1a; ① DETERMINISTIC&#xff1a;相同的输入参数总是产生相同的结果 ② NO SQL &#xff1a;不包含 SQL…

【PCB专题】案例:绕等长怎么直接以颜色区分看出是否绕好

PCB上对于时序的处理,在板卡上实际我们是通过绕等长的手段。做为一个合格的Layout工程师,等长的处理是不可或缺的技能。 一般来说,在绕等长的时候我们可以使用Delay Tune命令来改变走线的长度,然后通过规则管理器中分析看看哪根线长哪根线短。 但是在实际工作中,很可能绕着…

【AI绘画】为小白准备的最简单本地部署安装使用教程——webui启动器

什么是AI绘画&#xff1f; ai绘画&#xff0c;也叫“ai作画”、“人工智能绘画”&#xff0c;即通过 AI 生成技术得到画作或图片。ai作画由来已久&#xff0c;有许多创作ai绘画作品的方式&#xff0c;包括基于规则的图像生成算法、深度学习算法。最近火爆全网的是通过文本描述…

悟道3.0全面开源!LeCun VS Max 智源大会最新演讲

夕小瑶科技说 原创 作者 | 小戏 2023 年智源大会如期召开&#xff01; 这场汇集了 Geoffery Hinton、Yann LeCun、姚期智、Joseph Sifakis、Sam Altman、Russell 等一众几乎是 AI 领域学界业界“半壁江山”的大佬们的学术盛会&#xff0c;聚焦 AI 领域的前沿问题&#xff0c…

【EasyX】实时时钟

目录 实时时钟1. 绘制静态秒针2. 秒针的转动3. 根据实际时间转动4. 添加时针和分针5. 添加表盘刻度 实时时钟 本博客介绍利用EasyX实现一个实时钟表的小程序&#xff0c;同时学习时间函数的使用。 本文源码可从github获取 1. 绘制静态秒针 第一步定义钟表的中心坐标center&a…

使用Python绘制粽子消消乐,素描图(优化版,正常/漫画/写实风格),词云图,字符画图及提取轮廓

使用Python绘制粽子消消乐&#xff0c;素描图&#xff08;优化版&#xff0c;正常/漫画/写实风格&#xff09;&#xff0c;词云图&#xff0c;字符画图及提取轮廓 1. 效果图2. 源码2.1 素描图源码2.2 [优化版&#xff1a;制作不同风格的素描图&#xff08;正常&#xff0c;漫画…

String的理解

1.号 1. 1 号连接符的实现原理 StringBuilder&#xff08;或者StringBuffer&#xff09;的apend方法拼接&#xff0c;然后toString方法返回新的字符串 1.2 号的特殊情况 1.2.1 当""两端均为编译期确定的字符串常量时&#xff0c;编译器会进行相应的优化&#xf…

springboot项目外卖管理 day05-新增与删除套餐

文章目录 一、新增菜品1.1、需求分析1.2、数据模型setmealsetmeal_dish 1.3、代码开发-梳理交互过程1.3.1、下拉框展示1.3.2、菜品窗口展示1.3.3、新增套餐 2、套餐分页查询 一、新增菜品 1.1、需求分析 套餐就是菜品的集合。 后台系统中可以管理套餐信息&#xff0c;通过新…

solr快速上手:常用查询语法(八)

0. 引言 solr作为搜索引擎&#xff0c;就像我们使用mysql一样&#xff0c;在日常业务中&#xff0c;更多接触的则是各类操作语法&#xff0c;所以今天&#xff0c;我们再来学习solr的常用查询语法&#xff0c;为大家在工作中最基本的solr查询打下基础。 solr快速上手&#xff…

ia write 自定义 导出模板

https://github.com/yangyang5214/github-plus.iatemplate 使用了点个 star 吧&#xff09; 在原有的 GitHub 模板基础上&#xff0c;增加了 封面页面和页脚。 封面页面 展示文章标题 作者 时间。高端大气&#xff5e; 增加页脚&#xff0c;显示 page/pageCount 加载 通过…