影响性能下降、SQL慢体现在:执行时间长或者等待时间长
影响sql性能的常见情况:
- 数据过多:分库分表(根据微服务划分库、按照地域或时间分表存储、按照数据的特定字段对分库数量求余)
- 关联了太多的表,太多join:允许表出现冗余字段减少联查 SQL优化
- 没有充分利用到索引:索引建立
- 服务器调优及各个参数设置:调整my.cnf
1. 什么是索引
MySQL官方对索引的定义为:索引(Index)是帮助MySQL高效获取数据的数据结构。可以得到索引的本质:索引是数据结构。
索引的目的在于提高查询效率,可以类比字典,
如果要查“mysql”这个单词,我们肯定需要定位到m字母,然后从上往下找到y字母,再找到剩下的sql。
如果没有索引,那么你可能需要a----z,如果我想找到Java开头的单词呢?或者Oracle开头的单词呢?
是不是觉得如果没有索引,这个事情根本无法完成?
你可以简单理解为“排好序的快速查找数据结构”。
图就是一种可能的索引方式示例:
左边是数据表,一共有两列七条记录,最左边的是数据记录的物理地址 为了加快Col2的查找,可以维护一个右边所示的二叉查找树,每个节点分别包含索引键值和一个指向对应数据记录物理地址的指针,这样就可以运用二叉查找在一定的复杂度内获取到相应数据,从而快速的检索出符合条件的记录。
结论:
在数据之外,数据库系统还维护着满足特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据,这样就可以在这些数据结构上实现高级查找算法。这种数据结构,就是索引。
一般来说索引本身也很大,不可能全部存储在内存中,因此索引往往以索引文件的形式存储的磁盘上。
1.1 AVLTree 高度平衡树
增加和删除可能需要通过一次或多次树旋转来重新平衡这个树。
具有以下特点:
-
它是一棵空树或它的左右两个子树的高度差的绝对值不超过1
-
并且左右两个子树都是一棵平衡二叉树。
1.2 多叉树
多叉树(multiway tree)允许每个节点可以有更多的数据项和更多的子节点。2-3树,2-3-4树就是多叉树,多叉树通过重新组织节点,减少节点数量,增加分叉,减少树的高度,能对二叉树进行优化。
2. 索引的优劣势
2.1 优势
类似大学图书馆建书目索引,提高数据检索的效率,降低数据库的IO成本。
通过索引列对数据进行排序或分组,降低数据排序的成本,降低了CPU的消耗。
2.2 劣势
- 虽然索引大大提高了查询速度,同时却会降低更新表的速度,如对表进行INSERT、UPDATE和DELETE。因为更新表时,MySQL不仅要保存数据,还要保存一下索引文件。每次更新添加了索引列的字段,都会调整因为更新所带来的键值变化后的索引信息。
- 实际上索引也是一张表,该表保存了主键与索引字段,并指向实体表的记录,所以索引列也是要占用空间的。