Yolov3 模型构建和深入掌握快速搭建网络的搭积木方法

news2025/1/23 3:58:22

(一)设计Conv2dBatchLeaky

1、了解LeakyReLU激活函数

LeakyReLU 激活层,创建一个可调用对象以计算输入 x 的 LeakReLU 。其中,x为输入的 Tensor

感觉和飞桨的api有点相同,可以对照参考理解:

 LeakyReLU激活函数的图像

 Examples:

import torch
import torch.nn as nn
m = nn.LeakyReLU(0.1)
input = torch.randn(2)
output = m(input)
print(input)
print(output)

演示效果: 

 

 2、了解isinstance内置函数

'''
    isinstance函数:是Python中的一个内置函数,用来判断一个函数是否是一个已知的类型,类似 type()。
    isinstance()与type()的区别:
        例如在继承上的区别:
            1、isinstance() 会认为子类是一种父类类型,考虑继承关系。
            2、type() 不会认为子类是一种父类类型,不考虑继承关系。
'''

a = 2
print(isinstance(a,int) )     # 结果返回 True
print(isinstance(a,str))      # 结果返回 False
print(isinstance(a,(str,int,list)) )     # 是元组中的一个,结果返回 True

print("=======================================")

class Parent:
    pass

class Son(Parent):
    pass

print(isinstance(Parent(), Parent))  # returns True
print(type(Parent()) == Parent ) # returns True
print(isinstance(Son(), Parent))  # returns True
print(type(Son()) == Parent)  # returns False

 3、了解self.padding = int(kernel_size/2)

推荐文章:

CNN中卷积层的计算细节:CNN中卷积层的计算细节 - 知乎前几天在看CS231n中的CNN经典模型讲解时,花了一些时间才搞清楚卷积层输入输出的尺寸关系到底是什么样的,现总结如下。(可以参照我画的题图理解卷积层的运算) 卷积层尺寸的计算原理输入矩阵格式:四个维度,依次…https://zhuanlan.zhihu.com/p/29119239

卷积神经网络:卷积神经网络2-padding_卷积padding计算公式_安好1997的博客-CSDN博客什么是padding? padding就是填充、覆盖的意思,也就是过滤器。padding的选择? 我们通常选择3x3的过滤器,但是如果你阅读大量文献,你也会发现也有许多5x5、7x7的过滤器。不难发现,这里都是奇数类型的过滤器。如果你阅读许多相关文献,你也会发现绝大多数都选择的是奇数过滤器,这也符合计算机视觉的惯例。之所以选择奇数,一方面有便于确定过滤器当前所在的位置(只有一个中心点),另外也不止是这个原因。当然,也可以选择偶数过滤器,可能也会有很...https://blog.csdn.net/qq_37031892/article/details/109141826?spm=1001.2014.3001.5502pytorch中padding=kernel_size//2:

 

pytorch中padding=kernel_size//2_padding=2_gggoogle1020的博客-CSDN博客pytorch中padding=kernel_size//2到底是实现神魔形式的padding?padding=(kernel_size-1)/2若kernel_size是7*7,5*5,3*3,1*1常见的则padding是 3,2 ,1 ,0nn.Conv2d的padding是在卷积之前补0,如果愿意的话,可以通过使用torch.nn.Functional.pad来补非0的内容。四周都补!如果pad输入是一个tuple的话,则第一个参数表示上,下底的padding,第2个参数表示宽..https://blog.csdn.net/qq_36249824/article/details/107005949

笔记抄录归纳:

 4、torch.nn.Sequential(*args)

顺序容器。模块将按照它们在构造函数中传递的顺序添加到它中。或者,可以传入一个包含模块的OrderedDict。Sequential的forward()方法接受任何输入并将其转发到它包含的第一个模块。然后,它将输出按顺序“链接”到每个后续模块的输入,最后返回最后一个模块的输出。

Sequential通过手动调用模块序列提供的价值是,它允许将整个容器视为单个模块,这样在Sequential上执行转换就可以应用于它存储的每个模块(每个模块都是Sequential的注册子模块)。

Sequential和torch.nn.ModuleList的区别是什么?模块列表顾名思义就是一个用于存储模块的列表!另一方面,sequence中的层以级联方式连接。

# Using Sequential to create a small model. When `model` is run,
# input will first be passed to `Conv2d(1,20,5)`. The output of
# `Conv2d(1,20,5)` will be used as the input to the first
# `ReLU`; the output of the first `ReLU` will become the input
# for `Conv2d(20,64,5)`. Finally, the output of
# `Conv2d(20,64,5)` will be used as input to the second `ReLU`
model = nn.Sequential(
          nn.Conv2d(1,20,5),
          nn.ReLU(),
          nn.Conv2d(20,64,5),
          nn.ReLU()
        )

# Using Sequential with OrderedDict. This is functionally the
# same as the above code
model = nn.Sequential(OrderedDict([
          ('conv1', nn.Conv2d(1,20,5)),
          ('relu1', nn.ReLU()),
          ('conv2', nn.Conv2d(20,64,5)),
          ('relu2', nn.ReLU())
        ]))

使用Sequential创建一个小模型。当' model '运行时,输入将首先传递给' Conv2d(1,20,5) '。' Conv2d(1,20,5) '的输出将被用作第一个的输入“ReLU”;第一个“ReLU”的输出将成为“Conv2d(20,64,5)”的输入。最后,' Conv2d(20,64,5) '的输出将用作第二个' ReLU '的输入。

model = nn.Sequential(
          nn.Conv2d(1,20,5),
          nn.ReLU(),
          nn.Conv2d(20,64,5),
          nn.ReLU()
        )

使用Sequential和OrderedDict。这在功能上与上面的代码相同

model = nn.Sequential(OrderedDict([
          ('conv1', nn.Conv2d(1,20,5)),
          ('relu1', nn.ReLU()),
          ('conv2', nn.Conv2d(20,64,5)),
          ('relu2', nn.ReLU())
        ]))

 5、 torch.nn.Conv2d(in_channelsout_channelskernel_sizestride=1padding=0dilation=1groups=1bias=Truepadding_mode='zeros'device=Nonedtype=None)

 查看飞桨的Conv2d函数解释,可以参考理解:

 Examples:

# With square kernels and equal stride
m = nn.Conv2d(16, 33, 3, stride=2)
# non-square kernels and unequal stride and with padding
m = nn.Conv2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2))
# non-square kernels and unequal stride and with padding and dilation
m = nn.Conv2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2), dilation=(3, 1))
input = torch.randn(20, 16, 50, 100)
output = m(input)

6、torch.nn.BatchNorm2d(num_featureseps=1e-05momentum=0.1affine=Truetrack_running_stats=Truedevice=Nonedtype=None)

import torch
import torch.nn as nn
# With Learnable Parameters
m = nn.BatchNorm2d(100)
# Without Learnable Parameters
m = nn.BatchNorm2d(100, affine=False)
input = torch.randn(20, 100, 35, 45)
output = m(input)
print(output)

7、设计Conv2dBatchLeaky(用自定义layer充当积木)

思考:实际操作中我们往往更想要设计一些自定义的layer,怎么办呢?

此时若我们需要用nn.Conv2d,BatchNorm2d,又要LeakyReLU等公用积木搭网络,我们可以直接设计一个layer,叫做Conv2dBatchLeaky(),一块积木顶三块

'''
 in_channels:输入通道
 out_channels:输出通道
 kernel_size:核的大小
 stride:步长
 leaky_slop:默认设置为0.1
'''
class Conv2dBatchLeaky(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size, stride, leaky_slope=0.1):
        super(Conv2dBatchLeaky, self).__init__()

        self.in_channels = in_channels
        self.out_channels = out_channels
        self.kernel_size = kernel_size
        self.stride = stride
        if isinstance(kernel_size, (list, tuple)):
            self.padding = [int(ii/2) for ii in kernel_size]
            if flag_yolo_structure:
                print('------------------->>>> Conv2dBatchLeaky isinstance')
        else:
            self.padding = int(kernel_size/2)

        self.leaky_slope = leaky_slope
        # Layer
        # LeakyReLU : y = max(0, x) + leaky_slope*min(0,x)
        self.layers = nn.Sequential(
            nn.Conv2d(self.in_channels, self.out_channels, self.kernel_size, self.stride, self.padding, bias=False),
            nn.BatchNorm2d(self.out_channels),
            nn.LeakyReLU(self.leaky_slope, inplace=True)
        )

    def forward(self, x):
        x = self.layers(x)
        return x

(二)设计ResBlockSum实现List0"黑色框框"结构(通俗讲,不知道怎么准确描述,哈哈哈~)

比如说我们要设计list0,可以发现图中的三个黑色的框框是一样的结构,都是两个Convolutional+一个Residual,其中第一个Convolutional的卷积信息为 32 1x1,第二个Convolutional的卷积信息为64 3x3;

观察list0,我们可以发现三个黑色框框除了是一样的结构,而且多次使用,所以我们可以考虑封装一个函数来实现复用。为此设计出了这个函数:ResBlockSum

class ResBlockSum(nn.Module):
    def __init__(self, nchannels):
        super().__init__()
        self.block = nn.Sequential(
            Conv2dBatchLeaky(nchannels, int(nchannels/2), 1, 1),
            Conv2dBatchLeaky(int(nchannels/2), nchannels, 3, 1)
            )

    def forward(self, x):
        return x + self.block(x)

 核心实现:

self.block = nn.Sequential(
            Conv2dBatchLeaky(nchannels, int(nchannels/2), 1, 1),
            Conv2dBatchLeaky(int(nchannels/2), nchannels, 3, 1)
            )

当传入nchannels=64,调用1次ResBlockSum(64),即

self.block = nn.Sequential(
            Conv2dBatchLeaky(64, 32, 1, 1),
            Conv2dBatchLeaky(32, 64, 3, 1)
            )

 

即可实现该结构

当传入nchannels=128,调用2次ResBlockSum(128),即

self.block = nn.Sequential(
            Conv2dBatchLeaky(128, 64, 1, 1),
            Conv2dBatchLeaky(64, 128, 3, 1)
            )

即可实现该结构

当传入nchannels=256,调用8次ResBlockSum(256),即

self.block = nn.Sequential(
            Conv2dBatchLeaky(256, 128, 1, 1),
            Conv2dBatchLeaky(128, 256, 3, 1)
            )

即可实现该结构

(三)设计HeadBody,实现List2、List6、List10中的ConvolutionalSet

 

 

class HeadBody(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(HeadBody, self).__init__()

        self.layer = nn.Sequential(
            Conv2dBatchLeaky(in_channels, out_channels, 1, 1),
            Conv2dBatchLeaky(out_channels, out_channels*2, 3, 1),
            Conv2dBatchLeaky(out_channels*2, out_channels, 1, 1),
            Conv2dBatchLeaky(out_channels, out_channels*2, 3, 1),
            Conv2dBatchLeaky(out_channels*2, out_channels, 1, 1)
        )

    def forward(self, x):
        x = self.layer(x)
        return x

(四)实现上采样Upsample,需要实现两次Upsample

推荐文章:

interpolate-API文档-PaddlePaddle深度学习平台调整一个 batch 中图片的大小。 输入为 4-D Tensor 时形状为(num_batches, channels, in_h, in_w)或者(num_batches, in_h, in_w,https://www.paddlepaddle.org.cn/documentation/docs/zh/api/paddle/nn/functional/interpolate_cn.html

torch.nn.functional.interpolate(inputsize=Nonescale_factor=Nonemode='nearest'align_corners=Nonerecompute_scale_factor=None)

torch.nn.functional.interpolate — PyTorch 1.10 documentationicon-default.png?t=N4P3https://pytorch.org/docs/1.10/generated/torch.nn.functional.interpolate.html?highlight=f%20interpolate#torch.nn.functional.interpolate

了解torch的上采样Upsample的api:

import torch
import torch.nn as nn

# output_shape = [64, 48]
# up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
up = nn.Upsample(scale_factor=2)
input = torch.rand(32, 17, 32, 24)
output = up(input)
print(output.shape)

import torch
import torch.nn.functional as F

input = torch.rand(32, 17, 32, 24)
output = F.interpolate(input,scale_factor=2)
print(output.shape)

class Upsample(nn.Module):
    # Custom Upsample layer (nn.Upsample gives deprecated warning message)

    def __init__(self, scale_factor=1, mode='nearest'):
        super(Upsample, self).__init__()
        self.scale_factor = scale_factor
        self.mode = mode

    def forward(self, x):
        return F.interpolate(x, scale_factor=self.scale_factor, mode=self.mode)

(五)实现YOLOLayer,得到物体的anchor和num_classes

# default anchors=[(10,13), (16,30), (33,23), (30,61), (62,45), (59,119), (116,90), (156,198), (373,326)]
class YOLOLayer(nn.Module):
    def __init__(self, anchors, nC):
        super(YOLOLayer, self).__init__()

        self.anchors = torch.FloatTensor(anchors)
        self.nA = len(anchors)  # number of anchors (3)
        self.nC = nC  # number of classes
        self.img_size = 0
        if flag_yolo_structure:
            print('init YOLOLayer ------ >>> ')
            print('anchors  : ',self.anchors)
            print('nA       : ',self.nA)
            print('nC       : ',self.nC)
            print('img_size : ',self.img_size)

    def forward(self, p, img_size, var=None):# p : feature map
        bs, nG = p.shape[0], p.shape[-1] # batch_size , grid
        if flag_yolo_structure:
            print('bs, nG --->>> ',bs, nG)
        if self.img_size != img_size:
            create_grids(self, img_size, nG, p.device)

        # p.view(bs, 255, 13, 13) -- > (bs, 3, 13, 13, 85)  # (bs, anchors, grid, grid, xywh + confidence + classes)
        p = p.view(bs, self.nA, self.nC + 5, nG, nG).permute(0, 1, 3, 4, 2).contiguous()  #  prediction

        if self.training:
            return p
        else:  # inference
            io = p.clone()  # inference output
            io[..., 0:2] = torch.sigmoid(io[..., 0:2]) + self.grid_xy  # xy
            io[..., 2:4] = torch.exp(io[..., 2:4]) * self.anchor_wh  # wh yolo method
            io[..., 4:] = torch.sigmoid(io[..., 4:])  # p_conf, p_cls
            io[..., :4] *= self.stride
            if self.nC == 1:
                io[..., 5] = 1  # single-class model
            # flatten prediction, reshape from [bs, nA, nG, nG, nC] to [bs, nA * nG * nG, nC]
            return io.view(bs, -1, 5 + self.nC), p

def create_grids(self, img_size, nG, device='cpu'):
    # self.nA : len(anchors)  # number of anchors (3)
    # self.nC : nC  # number of classes
    # nG : feature map grid  13*13  26*26 52*52
    self.img_size = img_size
    self.stride = img_size / nG
    if flag_yolo_structure:
        print('create_grids stride : ',self.stride)

    # build xy offsets
    grid_x = torch.arange(nG).repeat((nG, 1)).view((1, 1, nG, nG)).float()
    grid_y = grid_x.permute(0, 1, 3, 2)
    self.grid_xy = torch.stack((grid_x, grid_y), 4).to(device)
    if flag_yolo_structure:
        print('grid_x : ',grid_x.size(),grid_x)
        print('grid_y : ',grid_y.size(),grid_y)
        print('grid_xy : ',self.grid_xy.size(),self.grid_xy)

    # build wh gains
    self.anchor_vec = self.anchors.to(device) / self.stride # 基于 stride 的归一化
    # print('self.anchor_vecself.anchor_vecself.anchor_vec:',self.anchor_vec)
    self.anchor_wh = self.anchor_vec.view(1, self.nA, 1, 1, 2).to(device)
    self.nG = torch.FloatTensor([nG]).to(device)


def get_yolo_layer_index(module_list):
    yolo_layer_index = []
    for index, l in enumerate(module_list):
        try:
            a = l[0].img_size and l[0].nG  # only yolo layer need img_size and nG
            yolo_layer_index.append(index)
        except:
            pass
    assert len(yolo_layer_index) > 0, "can not find yolo layer"
    return yolo_layer_index

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

>>>>>>>>>>>>>>>>>>>>得到大物体的anchor和num_classes>>>>>>>>>>>>>>>>>>>>>>>>

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

【一】实现List0

推荐文章:

Pytorch 快速搭建网络搭积木方法:Pytorch 快速搭建网络搭积木方法_w55100的博客-CSDN博客前言研究lightnet源代码时,看到这种技巧,惊为天人,于是单独摘出来。感谢作者EAVISE,lightnet传送门。一、 使用OrderedDict([ ])import torchimport torch.nn as nnfrom collections import OrderedDictlayer_list = [ # Seque...https://blog.csdn.net/w55100/article/details/89083776

1、了解OrderedDict(参考上文,运行结果如下)

import torch
import torch.nn as nn
from collections import OrderedDict

layer_list = [
    # Sequence 1 :
    OrderedDict([
        ('1_conv2d', nn.Conv2d(32, 64, 1, 1)),
        ('2_Relu', nn.ReLU(inplace=True)),
    ]),

    # Sequence 2 :
    OrderedDict([
        ('3_conv2d', nn.Conv2d((4 * 64) + 1024, 1024, 3, 1)),
        ('4_bn', nn.BatchNorm2d(1024, 20, 1, 1, 0)),
    ]),
]

sequence_list = [nn.Sequential(layer_dict) for layer_dict in layer_list]
print(sequence_list)

 >>>>>>>>>>>>>>>>>>>>>>准备就绪,开始实现List0的结构搭建>>>>>>>>>>>>>>>>>>>>>>>

# list 0
layer_list.append(OrderedDict([
	('0_stage1_conv', Conv2dBatchLeaky(3, 32, 3, 1, 1)),  # 416 x 416 x 32        # Convolutional

	("0_stage2_conv", Conv2dBatchLeaky(32, 64, 3, 2)),  # 208 x 208 x 64          # Convolutional
	("0_stage2_ressum1", ResBlockSum(64)),                                        # Convolutional*2 + Resiudal

	("0_stage3_conv", Conv2dBatchLeaky(64, 128, 3, 2)),  # 104 x 104 128          # Convolutional
	("0_stage3_ressum1", ResBlockSum(128)),
	("0_stage3_ressum2", ResBlockSum(128)),                                       # (Convolutional*2 + Resiudal)**2

	("0_stage4_conv", Conv2dBatchLeaky(128, 256, 3, 2)),  # 52 x 52 x 256         # Convolutional
	("0_stage4_ressum1", ResBlockSum(256)),
	("0_stage4_ressum2", ResBlockSum(256)),
	("0_stage4_ressum3", ResBlockSum(256)),
	("0_stage4_ressum4", ResBlockSum(256)),
	("0_stage4_ressum5", ResBlockSum(256)),
	("0_stage4_ressum6", ResBlockSum(256)),
	("0_stage4_ressum7", ResBlockSum(256)),
	("0_stage4_ressum8", ResBlockSum(256)),  # 52 x 52 x 256 output_feature_0      (Convolutional*2 + Resiudal)**8
	]))

【二】实现List1

  >>>>>>>>>>>>>>>>>>>>>>准备就绪,开始实现List1的结构搭建>>>>>>>>>>>>>>>>>>>>>>>

# list 1
layer_list.append(OrderedDict([
	("1_stage5_conv", Conv2dBatchLeaky(256, 512, 3, 2)),  # 26 x 26 x 512         # Convolutional
	("1_stage5_ressum1", ResBlockSum(512)),
	("1_stage5_ressum2", ResBlockSum(512)),
	("1_stage5_ressum3", ResBlockSum(512)),
	("1_stage5_ressum4", ResBlockSum(512)),
	("1_stage5_ressum5", ResBlockSum(512)),
	("1_stage5_ressum6", ResBlockSum(512)),
	("1_stage5_ressum7", ResBlockSum(512)),
	("1_stage5_ressum8", ResBlockSum(512)),  # 26 x 26 x 512 output_feature_1     # (Convolutional*2 + Resiudal)**8
	]))

【三】实现List2

  >>>>>>>>>>>>>>>>>>>>>>准备就绪,开始实现List2的结构搭建>>>>>>>>>>>>>>>>>>>>>>>

# list 2
layer_list.append(OrderedDict([
	("2_stage6_conv", Conv2dBatchLeaky(512, 1024, 3, 2)),  # 13 x 13 x 1024      # Convolutional
	("2_stage6_ressum1", ResBlockSum(1024)),
	("2_stage6_ressum2", ResBlockSum(1024)),
	("2_stage6_ressum3", ResBlockSum(1024)),
	("2_stage6_ressum4", ResBlockSum(1024)),  # 13 x 13 x 1024 output_feature_2 # (Convolutional*2 + Resiudal)**4
	("2_headbody1", HeadBody(in_channels=1024, out_channels=512)), # 13 x 13 x 512  # Convalutional Set = Conv2dBatchLeaky * 5
	]))

 【四】实现List3

  >>>>>>>>>>>>>>>>>>>>>>准备就绪,开始实现List3的结构搭建>>>>>>>>>>>>>>>>>>>>>>>

# list 3
layer_list.append(OrderedDict([
	("3_conv_1", Conv2dBatchLeaky(in_channels=512, out_channels=1024, kernel_size=3, stride=1)),
	("3_conv_2", nn.Conv2d(in_channels=1024, out_channels=len(anchor_mask1) * (num_classes + 5), kernel_size=1, stride=1, padding=0, bias=True)),
])) # predict one

【五】实现List4,得到大物体的anchor和num_classes

# list 4
layer_list.append(OrderedDict([
	("4_yolo", YOLOLayer([anchors[i] for i in anchor_mask1], num_classes))
])) # 3*((x, y, w, h, confidence) + classes )

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

>>>>>>>>>>>>>>>>>>>>得到中物体的anchor和num_classes>>>>>>>>>>>>>>>>>>>>>>>>

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

【一】实现List5

# list 5
layer_list.append(OrderedDict([
	("5_conv", Conv2dBatchLeaky(512, 256, 1, 1)),
	("5_upsample", Upsample(scale_factor=2)),
]))

【二】实现List6

# list 6
layer_list.append(OrderedDict([
	("6_head_body2", HeadBody(in_channels=768, out_channels=256)) # Convalutional Set = Conv2dBatchLeaky * 5
]))

【三】实现List7

# list 7
layer_list.append(OrderedDict([
	("7_conv_1", Conv2dBatchLeaky(in_channels=256, out_channels=512, kernel_size=3, stride=1)),
	("7_conv_2", nn.Conv2d(in_channels=512, out_channels=len(anchor_mask2) * (num_classes + 5), kernel_size=1, stride=1, padding=0, bias=True)),
])) # predict two

 【四】实现List8,得到中物体的anchor和num_classes

# list 8
layer_list.append(OrderedDict([
	("8_yolo", YOLOLayer([anchors[i] for i in anchor_mask2], num_classes))
])) # 3*((x, y, w, h, confidence) + classes )

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

>>>>>>>>>>>>>>>>>>>>得到小物体的anchor和num_classes>>>>>>>>>>>>>>>>>>>>>>>>

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

【一】实现List9

# list 9
layer_list.append(OrderedDict([
	("9_conv", Conv2dBatchLeaky(256, 128, 1, 1)),
	("9_upsample", Upsample(scale_factor=2)),
]))

【二】实现List10

# list 10
layer_list.append(OrderedDict([
	("10_head_body3", HeadBody(in_channels=384, out_channels=128))  # Convalutional Set = Conv2dBatchLeaky * 5
]))

 【三】实现List11

# list 11
layer_list.append(OrderedDict([
	("11_conv_1", Conv2dBatchLeaky(in_channels=128, out_channels=256, kernel_size=3, stride=1)),
	("11_conv_2", nn.Conv2d(in_channels=256, out_channels=len(anchor_mask3) * (num_classes + 5), kernel_size=1, stride=1, padding=0, bias=True)),
])) # predict three

【四】实现List12,得到小物体的anchor和num_classes

# list 12
layer_list.append(OrderedDict([
	("12_yolo", YOLOLayer([anchors[i] for i in anchor_mask3], num_classes))
])) # 3*((x, y, w, h, confidence) + classes )

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

>>>>>>>>>>>>>>>>>>>>>>>>>>>>整合List1-List12>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

nn.ModuleList类似于pytho中的list类型,只是将一系列层装入列表,并没有实现forward()方法,因此也不会有网络模型产生的副作用

# nn.ModuleList类似于pytho中的list类型,只是将一系列层装入列表,并没有实现forward()方法,因此也不会有网络模型产生的副作用
self.module_list = nn.ModuleList([nn.Sequential(i) for i in layer_list])
self.yolo_layer_index = get_yolo_layer_index(self.module_list)
if flag_yolo_structure:
	print('yolo_layer : ',len(layer_list),'\n')
	print(self.module_list[4])
	print(self.module_list[8])
	print(self.module_list[12])

实现yolov3的forward()函数,将module_list中的list结构像搭积木一样搭建出该网络模型

    def forward(self, x):
        img_size = x.shape[-1]
        if flag_yolo_structure:
            print('forward img_size : ',img_size,x.shape)
        output = []

        x = self.module_list[0](x)
        x_route1 = x
        x = self.module_list[1](x)
        x_route2 = x
        x = self.module_list[2](x)

        yolo_head = self.module_list[3](x)
        if flag_yolo_structure:
            print('mask1 yolo_head : ',yolo_head.size())
        yolo_head_out_13x13 = self.module_list[4][0](yolo_head, img_size)
        output.append(yolo_head_out_13x13)

        x = self.module_list[5](x)
        x = torch.cat([x, x_route2], 1)
        x = self.module_list[6](x)

        yolo_head = self.module_list[7](x)
        if flag_yolo_structure:
            print('mask2 yolo_head : ',yolo_head.size())
        yolo_head_out_26x26 = self.module_list[8][0](yolo_head, img_size)
        output.append(yolo_head_out_26x26)

        x = self.module_list[9](x)
        x = torch.cat([x, x_route1], 1)
        x = self.module_list[10](x)

        yolo_head = self.module_list[11](x)
        if flag_yolo_structure:
            print('mask3 yolo_head : ',yolo_head.size())
        yolo_head_out_52x52 = self.module_list[12][0](yolo_head, img_size)
        output.append(yolo_head_out_52x52)

        if self.training:
            return output
        else:
            io, p = list(zip(*output))  # inference output, training output
            return torch.cat(io, 1), p

 完整代码

import os
import numpy as np
from collections import OrderedDict

import torch
import torch.nn.functional as F
import torch.nn as nn
flag_yolo_structure = False # True 查看 相关的网络 log
'''
 in_channels:输入通道
 out_channels:输出通道
 kernel_size:核的大小
 stride:步长
 leaky_slop:默认设置为0.1
'''
class Conv2dBatchLeaky(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size, stride, leaky_slope=0.1):
        super(Conv2dBatchLeaky, self).__init__()

        self.in_channels = in_channels
        self.out_channels = out_channels
        self.kernel_size = kernel_size
        self.stride = stride
        if isinstance(kernel_size, (list, tuple)):
            self.padding = [int(ii/2) for ii in kernel_size]
            if flag_yolo_structure:
                print('------------------->>>> Conv2dBatchLeaky isinstance')
        else:
            self.padding = int(kernel_size/2)

        self.leaky_slope = leaky_slope
        # Layer
        # LeakyReLU : y = max(0, x) + leaky_slope*min(0,x)
        self.layers = nn.Sequential(
            nn.Conv2d(self.in_channels, self.out_channels, self.kernel_size, self.stride, self.padding, bias=False),
            nn.BatchNorm2d(self.out_channels),
            nn.LeakyReLU(self.leaky_slope, inplace=True)
        )

    def forward(self, x):
        x = self.layers(x)
        return x

class ResBlockSum(nn.Module):
    def __init__(self, nchannels):
        super().__init__()
        self.block = nn.Sequential(
            Conv2dBatchLeaky(nchannels, int(nchannels/2), 1, 1),
            Conv2dBatchLeaky(int(nchannels/2), nchannels, 3, 1)
            )

    def forward(self, x):
        return x + self.block(x)
class HeadBody(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(HeadBody, self).__init__()

        self.layer = nn.Sequential(
            Conv2dBatchLeaky(in_channels, out_channels, 1, 1),
            Conv2dBatchLeaky(out_channels, out_channels*2, 3, 1),
            Conv2dBatchLeaky(out_channels*2, out_channels, 1, 1),
            Conv2dBatchLeaky(out_channels, out_channels*2, 3, 1),
            Conv2dBatchLeaky(out_channels*2, out_channels, 1, 1)
        )

    def forward(self, x):
        x = self.layer(x)
        return x

class Upsample(nn.Module):
    # Custom Upsample layer (nn.Upsample gives deprecated warning message)

    def __init__(self, scale_factor=1, mode='nearest'):
        super(Upsample, self).__init__()
        self.scale_factor = scale_factor
        self.mode = mode

    def forward(self, x):
        return F.interpolate(x, scale_factor=self.scale_factor, mode=self.mode)

# default anchors=[(10,13), (16,30), (33,23), (30,61), (62,45), (59,119), (116,90), (156,198), (373,326)]
class YOLOLayer(nn.Module):
    def __init__(self, anchors, nC):
        super(YOLOLayer, self).__init__()

        self.anchors = torch.FloatTensor(anchors)
        self.nA = len(anchors)  # number of anchors (3)
        self.nC = nC  # number of classes
        self.img_size = 0
        if flag_yolo_structure:
            print('init YOLOLayer ------ >>> ')
            print('anchors  : ',self.anchors)
            print('nA       : ',self.nA)
            print('nC       : ',self.nC)
            print('img_size : ',self.img_size)

    def forward(self, p, img_size, var=None):# p : feature map
        bs, nG = p.shape[0], p.shape[-1] # batch_size , grid
        if flag_yolo_structure:
            print('bs, nG --->>> ',bs, nG)
        if self.img_size != img_size:
            create_grids(self, img_size, nG, p.device)

        # p.view(bs, 255, 13, 13) -- > (bs, 3, 13, 13, 85)  # (bs, anchors, grid, grid, xywh + confidence + classes)
        p = p.view(bs, self.nA, self.nC + 5, nG, nG).permute(0, 1, 3, 4, 2).contiguous()  #  prediction

        if self.training:
            return p
        else:  # inference
            io = p.clone()  # inference output
            io[..., 0:2] = torch.sigmoid(io[..., 0:2]) + self.grid_xy  # xy
            io[..., 2:4] = torch.exp(io[..., 2:4]) * self.anchor_wh  # wh yolo method
            io[..., 4:] = torch.sigmoid(io[..., 4:])  # p_conf, p_cls
            io[..., :4] *= self.stride
            if self.nC == 1:
                io[..., 5] = 1  # single-class model
            # flatten prediction, reshape from [bs, nA, nG, nG, nC] to [bs, nA * nG * nG, nC]
            return io.view(bs, -1, 5 + self.nC), p

def create_grids(self, img_size, nG, device='cpu'):
    # self.nA : len(anchors)  # number of anchors (3)
    # self.nC : nC  # number of classes
    # nG : feature map grid  13*13  26*26 52*52
    self.img_size = img_size
    self.stride = img_size / nG
    if flag_yolo_structure:
        print('create_grids stride : ',self.stride)

    # build xy offsets
    grid_x = torch.arange(nG).repeat((nG, 1)).view((1, 1, nG, nG)).float()
    grid_y = grid_x.permute(0, 1, 3, 2)
    self.grid_xy = torch.stack((grid_x, grid_y), 4).to(device)
    if flag_yolo_structure:
        print('grid_x : ',grid_x.size(),grid_x)
        print('grid_y : ',grid_y.size(),grid_y)
        print('grid_xy : ',self.grid_xy.size(),self.grid_xy)

    # build wh gains
    self.anchor_vec = self.anchors.to(device) / self.stride # 基于 stride 的归一化
    # print('self.anchor_vecself.anchor_vecself.anchor_vec:',self.anchor_vec)
    self.anchor_wh = self.anchor_vec.view(1, self.nA, 1, 1, 2).to(device)
    self.nG = torch.FloatTensor([nG]).to(device)


def get_yolo_layer_index(module_list):
    yolo_layer_index = []
    for index, l in enumerate(module_list):
        try:
            a = l[0].img_size and l[0].nG  # only yolo layer need img_size and nG
            yolo_layer_index.append(index)
        except:
            pass
    assert len(yolo_layer_index) > 0, "can not find yolo layer"
    return yolo_layer_index

class Yolov3(nn.Module):
    '''
        9个anchors,有小中大三个尺寸
            小  (10,13), (16,30), (33,23),
            中  (30,61), (62,45), (59,119),
            大  (116,90), (156,198), (373,326)
        为什么有小中大三个尺寸?
        答:是因为得符合长宽比,因为有的物体会偏长形,也就是长比宽高;有的物体时宽比长高;有的物体是比较偏于正方形的,也就是长宽差距不大
        yolov的作者,通过经验,统一出了常用的achors,长宽比例
        有时候人脸是有角度变化的,随着不同的角度变化,的确是不可能正对人脸,也就是长宽基本一样的情况。
        也就是它也会出现长比宽多,或者宽比长多,或者是长和宽的比例相差不大
    '''
    def __init__(self, num_classes=80, anchors=[(10,13), (16,30), (33,23), (30,61), (62,45), (59,119), (116,90), (156,198), (373,326)]):
        super().__init__()
        '''
            anchor_mask1 : 大物体 anchor [6, 7, 8] --->anchors[6] anchors[7] anchors[8] ---> (116,90), (156,198), (373,326)
            anchor_mask2 : 中物体 anchor [3, 4, 5] --->anchors[3] anchors[4] anchors[5] ---> (30,61), (62,45), (59,119)
            anchor_mask3 : 小物体 anchor [0, 1, 2] --->anchors[0] anchors[1] anchors[2] ---> (10,13), (16,30), (33,23)
        '''
        anchor_mask1 = [i for i in range(2 * len(anchors) // 3, len(anchors), 1)]  # [6, 7, 8]
        anchor_mask2 = [i for i in range(len(anchors) // 3, 2 * len(anchors) // 3, 1)]  # [3, 4, 5]
        anchor_mask3 = [i for i in range(0, len(anchors) // 3, 1)]  # [0, 1, 2]
        if flag_yolo_structure:
            print('anchor_mask1 : ',anchor_mask1) # 大物体 anchor
            print('anchor_mask2 : ',anchor_mask2) # 中物体 anchor
            print('anchor_mask3 : ',anchor_mask3) # 小物体 anchor

        # Network
        # OrderedDict 是 dict 的子类,其最大特征是,它可以“维护”添加 key-value 对的顺序
        layer_list = []

        '''
        ******      Conv2dBatchLeaky       *****
        op : Conv2d,BatchNorm2d,LeakyReLU
        inputs : in_channels, out_channels, kernel_size, stride, leaky_slope
        '''

        '''
        ******      ResBlockSum ******
        op : Conv2dBatchLeaky * 2 + x
        inputs : nchannels
        '''
        # list 0
        layer_list.append(OrderedDict([
            ('0_stage1_conv', Conv2dBatchLeaky(3, 32, 3, 1, 1)),  # 416 x 416 x 32        # Convolutional

            ("0_stage2_conv", Conv2dBatchLeaky(32, 64, 3, 2)),  # 208 x 208 x 64          # Convolutional
            ("0_stage2_ressum1", ResBlockSum(64)),                                        # Convolutional*2 + Resiudal

            ("0_stage3_conv", Conv2dBatchLeaky(64, 128, 3, 2)),  # 104 x 104 128          # Convolutional
            ("0_stage3_ressum1", ResBlockSum(128)),
            ("0_stage3_ressum2", ResBlockSum(128)),                                       # (Convolutional*2 + Resiudal)**2

            ("0_stage4_conv", Conv2dBatchLeaky(128, 256, 3, 2)),  # 52 x 52 x 256         # Convolutional
            ("0_stage4_ressum1", ResBlockSum(256)),
            ("0_stage4_ressum2", ResBlockSum(256)),
            ("0_stage4_ressum3", ResBlockSum(256)),
            ("0_stage4_ressum4", ResBlockSum(256)),
            ("0_stage4_ressum5", ResBlockSum(256)),
            ("0_stage4_ressum6", ResBlockSum(256)),
            ("0_stage4_ressum7", ResBlockSum(256)),
            ("0_stage4_ressum8", ResBlockSum(256)),  # 52 x 52 x 256 output_feature_0      (Convolutional*2 + Resiudal)**8
            ]))
        # list 1
        layer_list.append(OrderedDict([
            ("1_stage5_conv", Conv2dBatchLeaky(256, 512, 3, 2)),  # 26 x 26 x 512         # Convolutional
            ("1_stage5_ressum1", ResBlockSum(512)),
            ("1_stage5_ressum2", ResBlockSum(512)),
            ("1_stage5_ressum3", ResBlockSum(512)),
            ("1_stage5_ressum4", ResBlockSum(512)),
            ("1_stage5_ressum5", ResBlockSum(512)),
            ("1_stage5_ressum6", ResBlockSum(512)),
            ("1_stage5_ressum7", ResBlockSum(512)),
            ("1_stage5_ressum8", ResBlockSum(512)),  # 26 x 26 x 512 output_feature_1     # (Convolutional*2 + Resiudal)**8
            ]))

        '''
        ******      HeadBody      ******
        op : Conv2dBatchLeaky * 5
        inputs : in_channels, out_channels
        '''
        # list 2
        layer_list.append(OrderedDict([
            ("2_stage6_conv", Conv2dBatchLeaky(512, 1024, 3, 2)),  # 13 x 13 x 1024      # Convolutional
            ("2_stage6_ressum1", ResBlockSum(1024)),
            ("2_stage6_ressum2", ResBlockSum(1024)),
            ("2_stage6_ressum3", ResBlockSum(1024)),
            ("2_stage6_ressum4", ResBlockSum(1024)),  # 13 x 13 x 1024 output_feature_2 # (Convolutional*2 + Resiudal)**4
            ("2_headbody1", HeadBody(in_channels=1024, out_channels=512)), # 13 x 13 x 512  # Convalutional Set = Conv2dBatchLeaky * 5
            ]))
        # list 3
        layer_list.append(OrderedDict([
            ("3_conv_1", Conv2dBatchLeaky(in_channels=512, out_channels=1024, kernel_size=3, stride=1)),
            ("3_conv_2", nn.Conv2d(in_channels=1024, out_channels=len(anchor_mask1) * (num_classes + 5), kernel_size=1, stride=1, padding=0, bias=True)),
        ])) # predict one
        # list 4
        layer_list.append(OrderedDict([
            ("4_yolo", YOLOLayer([anchors[i] for i in anchor_mask1], num_classes))
        ])) # 3*((x, y, w, h, confidence) + classes )

        # list 5
        layer_list.append(OrderedDict([
            ("5_conv", Conv2dBatchLeaky(512, 256, 1, 1)),
            ("5_upsample", Upsample(scale_factor=2)),
        ]))
        # list 6
        layer_list.append(OrderedDict([
            ("6_head_body2", HeadBody(in_channels=768, out_channels=256)) # Convalutional Set = Conv2dBatchLeaky * 5
        ]))
        # list 7
        layer_list.append(OrderedDict([
            ("7_conv_1", Conv2dBatchLeaky(in_channels=256, out_channels=512, kernel_size=3, stride=1)),
            ("7_conv_2", nn.Conv2d(in_channels=512, out_channels=len(anchor_mask2) * (num_classes + 5), kernel_size=1, stride=1, padding=0, bias=True)),
        ])) # predict two
        # list 8
        layer_list.append(OrderedDict([
            ("8_yolo", YOLOLayer([anchors[i] for i in anchor_mask2], num_classes))
        ])) # 3*((x, y, w, h, confidence) + classes )
        # list 9
        layer_list.append(OrderedDict([
            ("9_conv", Conv2dBatchLeaky(256, 128, 1, 1)),
            ("9_upsample", Upsample(scale_factor=2)),
        ]))
        # list 10
        layer_list.append(OrderedDict([
            ("10_head_body3", HeadBody(in_channels=384, out_channels=128))  # Convalutional Set = Conv2dBatchLeaky * 5
        ]))
        # list 11
        layer_list.append(OrderedDict([
            ("11_conv_1", Conv2dBatchLeaky(in_channels=128, out_channels=256, kernel_size=3, stride=1)),
            ("11_conv_2", nn.Conv2d(in_channels=256, out_channels=len(anchor_mask3) * (num_classes + 5), kernel_size=1, stride=1, padding=0, bias=True)),
        ])) # predict three
        # list 12
        layer_list.append(OrderedDict([
            ("12_yolo", YOLOLayer([anchors[i] for i in anchor_mask3], num_classes))
        ])) # 3*((x, y, w, h, confidence) + classes )
        # nn.ModuleList类似于pytho中的list类型,只是将一系列层装入列表,并没有实现forward()方法,因此也不会有网络模型产生的副作用
        self.module_list = nn.ModuleList([nn.Sequential(i) for i in layer_list])
        self.yolo_layer_index = get_yolo_layer_index(self.module_list)
        if flag_yolo_structure:
            print('yolo_layer : ',len(layer_list),'\n')
            print(self.module_list[4])
            print(self.module_list[8])
            print(self.module_list[12])

        # print('self.module_list  -------->>> ',self.module_list)
        # print('self.yolo_layer_index  -------->>> ',self.yolo_layer_index)

    def forward(self, x):
        img_size = x.shape[-1]
        if flag_yolo_structure:
            print('forward img_size : ',img_size,x.shape)
        output = []

        x = self.module_list[0](x)
        x_route1 = x
        x = self.module_list[1](x)
        x_route2 = x
        x = self.module_list[2](x)

        yolo_head = self.module_list[3](x)
        if flag_yolo_structure:
            print('mask1 yolo_head : ',yolo_head.size())
        yolo_head_out_13x13 = self.module_list[4][0](yolo_head, img_size)
        output.append(yolo_head_out_13x13)

        x = self.module_list[5](x)
        x = torch.cat([x, x_route2], 1)
        x = self.module_list[6](x)

        yolo_head = self.module_list[7](x)
        if flag_yolo_structure:
            print('mask2 yolo_head : ',yolo_head.size())
        yolo_head_out_26x26 = self.module_list[8][0](yolo_head, img_size)
        output.append(yolo_head_out_26x26)

        x = self.module_list[9](x)
        x = torch.cat([x, x_route1], 1)
        x = self.module_list[10](x)

        yolo_head = self.module_list[11](x)
        if flag_yolo_structure:
            print('mask3 yolo_head : ',yolo_head.size())
        yolo_head_out_52x52 = self.module_list[12][0](yolo_head, img_size)
        output.append(yolo_head_out_52x52)

        if self.training:
            return output
        else:
            io, p = list(zip(*output))  # inference output, training output
            return torch.cat(io, 1), p

if __name__ == "__main__":
    dummy_input = torch.Tensor(5, 3, 416, 416)
    model = Yolov3(num_classes=80)
    params = list(model.parameters())
    k = 0
    for i in params:
        l = 1
        for j in i.size():
            l *= j
        # print("该层的结构: {}, 参数和: {}".format(str(list(i.size())), str(l)))
        k = k + l
    print("----------------------")
    print("总参数数量和: " + str(k))
    print("-----------yolo layer")
    for index in model.yolo_layer_index:
        print(model.module_list[index])

    print("-----------train")
    model.train()
    for res in model(dummy_input):
        print("res:", np.shape(res))

    print("-----------eval")
    model.eval()
    inference_out, train_out = model(dummy_input)
    print("inference_out:", np.shape(inference_out))
    for o in train_out:
        print("train_out:", np.shape(o))

如果您喜欢我的分享,就点个赞👍+收藏,这也是我努力更新文章的动力!!!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/615247.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【JavaEE】HTTP应用层协议

HTTP应用层协议 文章目录 JavaEE & HTTP应用层协议1. HTTP的报文协议格式1.1 fiddler介绍1.2 HTTP请求1.3 HTTP响应 2. HTTP请求与响应2.1 首行2.1.1 http方法2.1.2 URL2.1.3 版本号 2.2 header与空行2.2.1 Host2.2.2 Content-Type 与 Content-Length2.2.3 User-Agent&…

chatgpt赋能python:Python编程中如何取消上一步操作

Python编程中如何取消上一步操作 Python是一种强大的编程语言,被广泛应用于数据科学、机器学习、Web开发等众多领域。在Python编程过程中,有时会发生一些错误或者需求发生变化,但我们又不想完全重写代码来解决这些问题。这时,我们…

OpenStack部署(一)

OpenStack部署 1. 流程介绍1.1 模块关联1.2 虚拟机创建流程 2. 部署2.1 服务器规划2.2 环境整备1. 配置控制节点域名/计算节点解析2. 关闭控制节点/计算节点selinux和防火墙3. 安装与配置控制节点/计算节点的时间同步服务4. 在控制节点/计算节点执行命令验证时间同步服务5. 在控…

AI文本生成视频,根据文字就能一键生成视频的模型

const name "AI生成视频";console.log(name); 可以从给定的文字内容就能生成短视频,基于文本到图像生成技术,该技术旨在实现文本到视频的生成,可以通过文本生成独一无二的视频,将无限的想象力带入生活。 我们来看看文…

XShell 7 中文版一键安装激活教程

Xshell 7是一款功能强大的终端模拟器,支持SSh2,SSh3,SFTP,TELNET,RLOGIN和SERIAL。通过提供业界先进的性能,Xshell包含了其他SSH客户端无法发现的功能和优势。 Xshell是一款功能强大且安全的终端模拟器&…

12 【nextTick 过渡与动画】

1.nextTick 这是一个生命周期钩子 语法:this.$nextTick(回调函数)作用:在下一次 DOM 更新结束后执行其指定的回调。什么时候用:当改变数据后,要基于更新后的新DOM进行某些操作时,要在nextTick所指定的回调函数中执行…

工厂智慧能源-AcrelCloud-5000智慧能源综合解决方案

功能: AcrelCloud-5000能耗管理云平台采用泛在物联、云计算、大数据、移动通讯、智能传感等技术手段可为用户提供能源数据、统计分析、能效分析、用能预警、设备管理等服务,平台可以广泛应用于多种领域。 ​ 应用场所: 云平台结构&#xf…

xshell是什么软件,xshells7使用教程安装及连接linux的使用方法

Xshell是一款功能强大的终端模拟器,用户可以通过Xshell来查看编辑各种服务器上的文件和执行各类脚本,其基于SSH协议进行登录,安全性非常高,被广泛应用于企业的日常开发运维工作中。它支持SSH1, SSH2, 以及Microsoft Windows 平台的…

阿里java一面凉经

目录 1.Java中int跟integer的区别2.integer在Java中有个缓存的概念,有了解吗3.跟equals的区别,equals的重写怎么进行比较4.在实际开发中为什么不能用浮点类型来存金钱的数据,浮点类不精确的本质是什么5.构造器能被重写吗6.反射相关&#xff1…

Excel VBA代码密码破解

1.查看VBA代码,有密码 2.破解密码: 2.1:修改文件名后缀,修改为压缩包格式 2.2:打开压缩包文件,找到文件:vbaProject.bin 2.3:把这个文件从压缩包中拖出来 2.4:打开.bi…

Leetcode154. 寻找旋转排序数组中的最小值 II

Every day a Leetcode 题目来源:154. 寻找旋转排序数组中的最小值 II 解法1:二分查找 一个包含重复元素的升序数组在经过旋转之后,可以得到下面可视化的折线图: 其中横轴表示数组元素的下标,纵轴表示数组元素的值。…

TDengine3.0与2.0版本的差异

TDengine3.0与2.0版本的差异 一、TDEnigne3.0相关环境构建及使用二、3.0与2.0的版本差异2.1 mnode及集群创建2.2 创建数据库2.3 数据库和超级表的详细查询2.4 查看超级表下有多少子表2.5 RESTful 不兼容2.6 无法修改副本数2.7 消失的时间戳 一、TDEnigne3.0相关环境构建及使用 …

ArgoCD(一): 架构及其模型

1.1 ArgoCD 概览 Argo项目2017年由Applatix公司成立,2018年被Intuit收购,之后,BlackRock为Argo项目贡献了Argo Events这一项目; Argo所有组件都通过kubernetes CRD实现 Argo生态目前主要由四个子项目组成 Argo Workflows &#xf…

Godot引擎 4.0 文档 - 手册 - 最佳实践

本文为Google Translate英译中结果,DrGraph在此基础上加了一些校正。英文原版页面:Best practices — Godot Engine (stable) documentation in English 介绍 本系列是一系列最佳实践,可帮助您高效地使用 Godot。 Godot 在构建项目代码库并…

图漾相机—windows- C# SDK(官网下载编译)

文章目录 一、 安装依赖:二. 下载swig和SDK:swig下载连接:[https://www.swig.org/](https://www.swig.org/)下载C# SDK下载 Windows Camport3 SDK 三、配置C#和swig环境变量编译前,请先:安装 Python。 安装 NumPy 和 O…

华为 HCU 硬改教程 真实参数,华为改串号 改机教程 登录异常 设备异常 环境异常Qv

华为 HCU 硬改教程 真实参数,华为改串号 改机教程 登录异常 设备异常 环境异常Qv HCU基础版硬改教程 须知:使用需要关闭所有杀毒软件 华为手机支持这些型号硬改 ------------------------------操作前准备---------------------------------- 确保手机能…

05SpringCloud 分布式事务seata

分布式事务seata 1.前言 务必要知道,分布式事务不可能100%完美解决问题!只能尽量提高成功概率!让这个成功概率尽量接近99.999%,为了达到这个目的,甚至加入人工。 2.场景 有如下业务场景:当我们添加订单…

“AI Earth”人工智能创新挑战赛:助力精准气象和海洋预测Baseline[2]:数据探索性分析(温度风场可视化)、CNN+LSTM模型建模

【机器学习入门与实践】入门必看系列,含数据挖掘项目实战:模型融合、特征优化、特征降维、探索性分析等,实战带你掌握机器学习数据挖掘 专栏详细介绍:【机器学习入门与实践】合集入门必看系列,含数据挖掘项目实战:数据融合、特征优化、特征降维、探索性分析等,实战带你掌…

vue3-实战-05-管理后台顶部tabbar开发-全局守卫

目录 1-顶部tabbar组件静态搭建与拆分 2-菜单折叠效果 3-顶部面包屑动态展示 4-刷新和全屏 4.1-点击刷新操作 4.2-全屏 4.3-退出登录 5-路由鉴权 1-顶部tabbar组件静态搭建与拆分 分析一下,顶部分为左右两侧,左侧是面包屑,右边是 刷新…

物联网行业的发展的趋势、现状与挑战

随着物联网技术的不断发展,越来越多的行业正在积极拥抱物联网,进行物联网开发。在这些行业中,有大量的产品和服务都在使用物联网技术。事实上,目前有超过1000亿个设备在运行着联网设备。全球智能传感器市场预计将从2021年的272亿美…