1. 项目介绍
面青识别(face_classification )是一个基于深度学习的面部表情识别项目,它使用 Keras 和 TensorFlow 框架来实现模型的训练和预测。该项目的主要目标是在图像或视频中检测并识别人脸表情,并将其分类为七种不同的情绪类别:生气、厌恶、害怕、高兴、平静、伤心和惊讶。该项目使用了深度卷积神经网络(CNN)来实现面部表情识别。
全部代码联系扣扣1309399183
该项目提供了一个简单易用的用户界面,可以实时从网络摄像头或视频文件中捕获面部图像,并对其进行情绪识别。此外,该项目还提供了一个 Python 库,可以方便地将其集成到其他项目中。
2. 项目原理
面部表情识别是计算机视觉领域的一个重要研究方向,它的主要目标是通过计算机算法来识别人脸图像中的情绪表达。面部表情识别技术的应用非常广泛,例如在人机交互、虚拟现实、心理学研究等方面都有重要的应用价值。
面部表情识别技术的核心是如何从人脸图像中提取有效的特征,并将其映射到不同的情绪类别上。深度学习技术已经在这一领域取得了很大的进展,其中最常用的是卷积神经网络(CNN)。
该项目使用了一个经过预训练的 CNN 模型,即 VGG16,作为特征提取器,并在其之上添加全连接层和 softmax 分类器来进行情绪分类。VGG16 是一个深度卷积神经网络,由 16 层卷积层和全连接层组成,其中每个卷积层都使