驱动开发:内核解析PE结构节表

news2024/10/5 14:24:26

在笔者上一篇文章《驱动开发:内核解析PE结构导出表》介绍了如何解析内存导出表结构,本章将继续延申实现解析PE结构的PE头,PE节表等数据,总体而言内核中解析PE结构与应用层没什么不同,在上一篇文章中LyShark封装实现了KernelMapFile()内存映射函数,在之后的章节中这个函数会被多次用到,为了减少代码冗余,后期文章只列出重要部分,读者可以自行去前面的文章中寻找特定的片段。

Windows NT 系统中可执行文件使用微软设计的新的文件格式,也就是至今还在使用的PE格式,PE文件的基本结构如下图所示:

在PE文件中,代码,已初始化的数据,资源和重定位信息等数据被按照属性分类放到不同的Section(节区/或简称为节)中,而每个节区的属性和位置等信息用一个IMAGE_SECTION_HEADER结构来描述,所有的IMAGE_SECTION_HEADER结构组成了一个节表(Section Table),节表数据在PE文件中被放在所有节数据的前面.

上面PE结构图中可知PE文件的开头部分包括了一个标准的DOS可执行文件结构,这看上去有些奇怪,但是这对于可执行程序的向下兼容性来说却是不可缺少的,当然现在已经基本不会出现纯DOS程序了,现在来说这个IMAGE_DOS_HEADER结构纯粹是历史遗留问题。

DOS头结构解析: PE文件中的DOS部分由MZ格式的文件头和可执行代码部分组成,可执行代码被称为DOS块(DOS stub),MZ格式的文件头由IMAGE_DOS_HEADER结构定义,在C语言头文件winnt.h中有对这个DOS结构详细定义,如下所示:

typedef struct _IMAGE_DOS_HEADER { 
    WORD   e_magic;                     // DOS的头部
    WORD   e_cblp;                      // Bytes on last page of file
    WORD   e_cp;                        // Pages in file
    WORD   e_crlc;                      // Relocations
    WORD   e_cparhdr;                   // Size of header in paragraphs
    WORD   e_minalloc;                  // Minimum extra paragraphs needed
    WORD   e_maxalloc;                  // Maximum extra paragraphs needed
    WORD   e_ss;                        // Initial (relative) SS value
    WORD   e_sp;                        // Initial SP value
    WORD   e_csum;                      // Checksum
    WORD   e_ip;                        // Initial IP value
    WORD   e_cs;                        // Initial (relative) CS value
    WORD   e_lfarlc;                    // File address of relocation table
    WORD   e_ovno;                      // Overlay number
    WORD   e_res[4];                    // Reserved words
    WORD   e_oemid;                     // OEM identifier (for e_oeminfo)
    WORD   e_oeminfo;                   // OEM information; e_oemid specific
    WORD   e_res2[10];                  // Reserved words
    LONG   e_lfanew;                    // 指向了PE文件的开头(重要)
  } IMAGE_DOS_HEADER, *PIMAGE_DOS_HEADER;

在DOS文件头中,第一个字段e_magic被定义为MZ,标志着DOS文件的开头部分,最后一个字段e_lfanew则指明了PE文件的开头位置,现在来说除了第一个字段和最后一个字段有些用处,其他字段几乎已经废弃了,这里附上读取DOS头的代码。

void DisplayDOSHeadInfo(HANDLE ImageBase)
{
    PIMAGE_DOS_HEADER pDosHead = NULL;
    pDosHead = (PIMAGE_DOS_HEADER)ImageBase;

    printf("DOS头:        %x\n", pDosHead->e_magic);
    printf("文件地址:     %x\n", pDosHead->e_lfarlc);
    printf("PE结构偏移:   %x\n", pDosHead->e_lfanew);
}

PE头结构解析: 从DOS文件头的e_lfanew字段向下偏移003CH的位置,就是真正的PE文件头的位置,该文件头是由IMAGE_NT_HEADERS结构定义的,定义结构如下:

typedef struct _IMAGE_NT_HEADERS {
    DWORD Signature;                   // PE文件标识字符
    IMAGE_FILE_HEADER FileHeader;
    IMAGE_OPTIONAL_HEADER32 OptionalHeader;
} IMAGE_NT_HEADERS32, *PIMAGE_NT_HEADERS32;

如上PE文件头的第一个DWORD是一个标志,默认情况下它被定义为00004550h也就是P,E两个字符另外加上两个零,而大部分的文件属性由标志后面的IMAGE_FILE_HEADERIMAGE_OPTIONAL_HEADER32结构来定义,我们继续跟进IMAGE_FILE_HEADER这个结构:

typedef struct _IMAGE_FILE_HEADER {
    WORD    Machine;                  // 运行平台
    WORD    NumberOfSections;         // 文件的节数目
    DWORD   TimeDateStamp;            // 文件创建日期和时间
    DWORD   PointerToSymbolTable;     // 指向符号表(用于调试)
    DWORD   NumberOfSymbols;          // 符号表中的符号数量
    WORD    SizeOfOptionalHeader;     // IMAGE_OPTIONAL_HANDLER32结构的长度
    WORD    Characteristics;          // 文件的属性 exe=010fh dll=210eh
} IMAGE_FILE_HEADER, *PIMAGE_FILE_HEADER;

继续跟进 IMAGE_OPTIONAL_HEADER32 结构,该结构体中的数据就丰富了,重要的结构说明经备注好了:

typedef struct _IMAGE_OPTIONAL_HEADER {
    WORD    Magic;
    BYTE    MajorLinkerVersion;           // 连接器版本
    BYTE    MinorLinkerVersion;
    DWORD   SizeOfCode;                   // 所有包含代码节的总大小
    DWORD   SizeOfInitializedData;        // 所有已初始化数据的节总大小
    DWORD   SizeOfUninitializedData;      // 所有未初始化数据的节总大小
    DWORD   AddressOfEntryPoint;          // 程序执行入口RVA
    DWORD   BaseOfCode;                   // 代码节的起始RVA
    DWORD   BaseOfData;                   // 数据节的起始RVA
    DWORD   ImageBase;                    // 程序镜像基地址
    DWORD   SectionAlignment;             // 内存中节的对其粒度
    DWORD   FileAlignment;                // 文件中节的对其粒度
    WORD    MajorOperatingSystemVersion;  // 操作系统主版本号
    WORD    MinorOperatingSystemVersion;  // 操作系统副版本号
    WORD    MajorImageVersion;            // 可运行于操作系统的最小版本号
    WORD    MinorImageVersion;
    WORD    MajorSubsystemVersion;        // 可运行于操作系统的最小子版本号
    WORD    MinorSubsystemVersion;
    DWORD   Win32VersionValue;
    DWORD   SizeOfImage;                  // 内存中整个PE映像尺寸
    DWORD   SizeOfHeaders;                // 所有头加节表的大小
    DWORD   CheckSum;
    WORD    Subsystem;
    WORD    DllCharacteristics;
    DWORD   SizeOfStackReserve;           // 初始化时堆栈大小
    DWORD   SizeOfStackCommit;
    DWORD   SizeOfHeapReserve;
    DWORD   SizeOfHeapCommit;
    DWORD   LoaderFlags;
    DWORD   NumberOfRvaAndSizes;          // 数据目录的结构数量
    IMAGE_DATA_DIRECTORY DataDirectory[IMAGE_NUMBEROF_DIRECTORY_ENTRIES];
} IMAGE_OPTIONAL_HEADER32, *PIMAGE_OPTIONAL_HEADER32;

IMAGE_DATA_DIRECTORY数据目录列表,它由16个相同的IMAGE_DATA_DIRECTORY结构组成,这16个数据目录结构定义很简单仅仅指出了某种数据的位置和长度,定义如下:

typedef struct _IMAGE_DATA_DIRECTORY {
    DWORD   VirtualAddress;      // 数据起始RVA
    DWORD   Size;                // 数据块的长度
} IMAGE_DATA_DIRECTORY, *PIMAGE_DATA_DIRECTORY;

上方的结构就是PE文件的重要结构,接下来将通过编程读取出PE文件的开头相关数据,读取这些结构也非常简单代码如下所示。

// 署名权
// right to sign one's name on a piece of work
// PowerBy: LyShark
// Email: me@lyshark.com

NTSTATUS DriverEntry(IN PDRIVER_OBJECT Driver, PUNICODE_STRING RegistryPath)
{
	DbgPrint("hello lyshark.com \n");

	NTSTATUS status = STATUS_SUCCESS;
	HANDLE hFile = NULL;
	HANDLE hSection = NULL;
	PVOID pBaseAddress = NULL;
	UNICODE_STRING FileName = { 0 };

	// 初始化字符串
	RtlInitUnicodeString(&FileName, L"\\??\\C:\\Windows\\System32\\ntdll.dll");

	// 内存映射文件
	status = KernelMapFile(FileName, &hFile, &hSection, &pBaseAddress);
	if (!NT_SUCCESS(status))
	{
		return 0;
	}

	// 获取PE头数据集
	PIMAGE_DOS_HEADER pDosHeader = (PIMAGE_DOS_HEADER)pBaseAddress;
	PIMAGE_NT_HEADERS pNtHeaders = (PIMAGE_NT_HEADERS)((PUCHAR)pDosHeader + pDosHeader->e_lfanew);
	PIMAGE_FILE_HEADER pFileHeader = &pNtHeaders->FileHeader;

	DbgPrint("运行平台:     %x\n", pFileHeader->Machine);
	DbgPrint("节区数目:     %x\n", pFileHeader->NumberOfSections);
	DbgPrint("时间标记:     %x\n", pFileHeader->TimeDateStamp);
	DbgPrint("可选头大小    %x\n", pFileHeader->SizeOfOptionalHeader);
	DbgPrint("文件特性:     %x\n", pFileHeader->Characteristics);
	DbgPrint("入口点:        %p\n", pNtHeaders->OptionalHeader.AddressOfEntryPoint);
	DbgPrint("镜像基址:      %p\n", pNtHeaders->OptionalHeader.ImageBase);
	DbgPrint("镜像大小:      %p\n", pNtHeaders->OptionalHeader.SizeOfImage);
	DbgPrint("代码基址:      %p\n", pNtHeaders->OptionalHeader.BaseOfCode);
	DbgPrint("区块对齐:      %p\n", pNtHeaders->OptionalHeader.SectionAlignment);
	DbgPrint("文件块对齐:    %p\n", pNtHeaders->OptionalHeader.FileAlignment);
	DbgPrint("子系统:        %x\n", pNtHeaders->OptionalHeader.Subsystem);
	DbgPrint("区段数目:      %d\n", pNtHeaders->FileHeader.NumberOfSections);
	DbgPrint("时间日期标志:  %x\n", pNtHeaders->FileHeader.TimeDateStamp);
	DbgPrint("首部大小:      %x\n", pNtHeaders->OptionalHeader.SizeOfHeaders);
	DbgPrint("特征值:        %x\n", pNtHeaders->FileHeader.Characteristics);
	DbgPrint("校验和:        %x\n", pNtHeaders->OptionalHeader.CheckSum);
	DbgPrint("可选头部大小:  %x\n", pNtHeaders->FileHeader.SizeOfOptionalHeader);
	DbgPrint("RVA 数及大小:  %x\n", pNtHeaders->OptionalHeader.NumberOfRvaAndSizes);

	ZwUnmapViewOfSection(NtCurrentProcess(), pBaseAddress);
	ZwClose(hSection);
	ZwClose(hFile);

	Driver->DriverUnload = UnDriver;
	return STATUS_SUCCESS;
}

运行如上这段代码,即可解析出ntdll.dll模块的核心内容,如下图所示;

接着来实现解析节表,PE文件中的所有节的属性定义都被定义在节表中,节表由一系列的IMAGE_SECTION_HEADER结构排列而成,每个结构邮过来描述一个节,节表总被存放在紧接在PE文件头的地方,也即是从PE文件头开始偏移为00f8h的位置处,如下是节表头部的定义。

typedef struct _IMAGE_SECTION_HEADER {
    BYTE    Name[IMAGE_SIZEOF_SHORT_NAME];
    union {
            DWORD   PhysicalAddress;
            DWORD   VirtualSize;           // 节区尺寸
    } Misc;
    DWORD   VirtualAddress;                // 节区RVA
    DWORD   SizeOfRawData;                 // 在文件中对齐后的尺寸
    DWORD   PointerToRawData;              // 在文件中的偏移
    DWORD   PointerToRelocations;          // 在OBJ文件中使用
    DWORD   PointerToLinenumbers;
    WORD    NumberOfRelocations;
    WORD    NumberOfLinenumbers;
    DWORD   Characteristics;               // 节区属性字段
} IMAGE_SECTION_HEADER, *PIMAGE_SECTION_HEADER;

解析节表也很容易实现,首先通过pFileHeader->NumberOfSections获取到节数量,然后循环解析直到所有节输出完成,这段代码实现如下所示。

// 署名权
// right to sign one's name on a piece of work
// PowerBy: LyShark
// Email: me@lyshark.com

NTSTATUS DriverEntry(IN PDRIVER_OBJECT Driver, PUNICODE_STRING RegistryPath)
{
	DbgPrint("hello lyshark.com \n");

	NTSTATUS status = STATUS_SUCCESS;
	HANDLE hFile = NULL;
	HANDLE hSection = NULL;
	PVOID pBaseAddress = NULL;
	UNICODE_STRING FileName = { 0 };

	// 初始化字符串
	RtlInitUnicodeString(&FileName, L"\\??\\C:\\Windows\\System32\\ntdll.dll");

	// 内存映射文件
	status = KernelMapFile(FileName, &hFile, &hSection, &pBaseAddress);
	if (!NT_SUCCESS(status))
	{
		return 0;
	}

	// 获取PE头数据集
	PIMAGE_DOS_HEADER pDosHeader = (PIMAGE_DOS_HEADER)pBaseAddress;
	PIMAGE_NT_HEADERS pNtHeaders = (PIMAGE_NT_HEADERS)((PUCHAR)pDosHeader + pDosHeader->e_lfanew);
	PIMAGE_SECTION_HEADER pSection = IMAGE_FIRST_SECTION(pNtHeaders);
	PIMAGE_FILE_HEADER pFileHeader = &pNtHeaders->FileHeader;

	DWORD NumberOfSectinsCount = 0;

	// 获取区块数量
	NumberOfSectinsCount = pFileHeader->NumberOfSections;

	DWORD64 *difA = NULL;   // 虚拟地址开头
	DWORD64 *difS = NULL;   // 相对偏移(用于遍历)

	difA = ExAllocatePool(NonPagedPool, NumberOfSectinsCount*sizeof(DWORD64));
	difS = ExAllocatePool(NonPagedPool, NumberOfSectinsCount*sizeof(DWORD64));

	DbgPrint("节区名称 相对偏移\t虚拟大小\tRaw数据指针\tRaw数据大小\t节区属性\n");

	for (DWORD temp = 0; temp<NumberOfSectinsCount; temp++, pSection++)
	{
		DbgPrint("%10s\t 0x%x \t 0x%x \t 0x%x \t 0x%x \t 0x%x \n",
			pSection->Name, pSection->VirtualAddress, pSection->Misc.VirtualSize,
			pSection->PointerToRawData, pSection->SizeOfRawData, pSection->Characteristics);

		difA[temp] = pSection->VirtualAddress;
		difS[temp] = pSection->VirtualAddress - pSection->PointerToRawData;
	}

	ZwUnmapViewOfSection(NtCurrentProcess(), pBaseAddress);
	ZwClose(hSection);
	ZwClose(hFile);

	Driver->DriverUnload = UnDriver;
	return STATUS_SUCCESS;
}

运行驱动程序,即可输出ntdll.dll模块的节表信息,如下图;

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/598851.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

ChatGPT国内免费使用方法【国内免费使用地址】

当下人工智能技术的快速发展&#xff0c;聊天机器人成为了越来越多人们日常生活和工作中的必备工具。如何在国内免费使用ChatGPT聊天机器人&#xff0c;成为了热门话题。本文将为你详细介绍ChatGPT国内免费使用方法&#xff0c;让你轻松拥有聊天机器人助手&#xff0c;提高工作…

基于Halcon卡尺测量: Metrology批量测量矩形和圆

处理图如下: 原图如下: 主要思想: 1.准备一次性将图中12个圆和2个矩形都检测出来 2.初步确定12个圆的圆心坐标和半径,初步确定两个矩形的中心坐标,角度,长短边长 3.创建计量模型 4.定义计量模型尺寸 5.增加检测矩形和圆形的信息参数 6.应用计量模型,获取结果 7.显示…

什么是 IMU?惯性测量单元工作和应用

术语IMU代表“惯性测量单元”&#xff0c;我们用它来描述测量工具的集合。当安装在设备中时&#xff0c;这些工具可以捕获有关设备移动的数据。IMU 包含加速度计、陀螺仪和磁力计等传感器。 IMU 如何工作&#xff1f; IMU 可以测量各种因素&#xff0c;包括速度、方向、加速度、…

vue 单点登录的方法

vue 单点登录的方法 当我们在使用 vue开发项目时&#xff0c;一般都是只有一个用户帐号&#xff0c;如果要实现多个帐号的单点登录&#xff0c;可以使用 Session和 LocalStorage这两个技术。这两个技术在实现单点登录时&#xff0c;都需要有一个用户名和一个密码&#xff0c;而…

【C++】C++ 11 智能指针

【C】C 11 智能指针 文章目录 【C】C 11 智能指针1.为什么需要智能指针2. C中智能指针和指针的区别是什么&#xff1f;3. C中的智能指针有哪些&#xff1f;分别解决的问题以及区别&#xff1f;&#xff08;1&#xff09;auto_ptr&#xff08;C98的方案&#xff0c;C11已经弃用&…

JavaEE进阶(Mybatis)5/31

目录 1. SQL注入 2.concat&#xff08;&#xff09;用于like模糊查询 3.resultMap 4. 5.动态SQL 6.foreach标签 1. SQL注入 $问题会导致SQL注入 因为$是直接替换的&#xff0c;and的优先级高于or true or false #不存在SQL注入的问题&#xff0c;因为他是预编译的&…

坚持的工作好习惯

工作好习惯 目录概述需求&#xff1a; 设计思路实现思路分析1.工作好习惯的重要性2.谈下自己的工作方法2.希望有时也从别人那里也学习一下看看 参考资料和推荐阅读 Survive by day and develop by night. talk for import biz , show your perfect code,full busy&#xff0c;s…

windows xp 上 Task Scheduler服务 启动后停止,导致数据库自动备份无法编辑和使用问题解决

项目中使用了mysql数据库&#xff0c;大多数人都会选择Navicat来连接数据库&#xff0c;一般会设置计划来自动备份数据库&#xff0c;但我在编辑自动备份的计划时&#xff0c;弹出task scheduler服务无法启动&#xff0c;退出回到桌面&#xff0c;启动windows的服务&#xff0c…

牛客网C++面试宝典(一)C/C++基础之语言基础

此系列为在学习牛客网C面试宝典过程中记录的笔记&#xff0c;本篇记录第一章C/C基础部分的第一节&#xff1a;语言基础。 牛客网C面试宝典链接&#xff1a;https://www.nowcoder.com/issue/tutorial?tutorialId93&uuida34ed23d58b84da3a707c70371f59c21 文章目录 1.1 简述…

Docker 数据持久化方案详解

目录 一、Docker数据持久化概述 1.1联合文件系统 1.2容器的数据卷 1.2.1 什么是数据卷 1.2.2 数据卷特点 1.2.3 Docker提供三种方式将数据从宿主机挂载到容器 二、 Docker持久化方案 2.1 查看volume 基本命令使用方法 2.2 volume持久化方案 2.2.1volume简介 2.2.2.v…

【JavaSE】Java基础语法(四十一):TCP通信程序

文章目录 1. TCP发送数据2. TCP接收数据【应用】3. TCP程序练习4. TCP程序文件上传练习【应用】 1. TCP发送数据 Java中的TCP通信 Java对基于TCP协议的的网络提供了良好的封装&#xff0c;使用Socket对象来代表两端的通信端口&#xff0c;并通过Socket产生IO流来进行网络通信。…

Android 易忽略小知识

1.设置hint的字体大小 在Android xml文件中并没有直接设置hint字体大小的属性。如果hint文字的大小不希望跟正常字体的大小一样&#xff0c;就只能通过代码的方式来进行处理。 提供两种方式&#xff1a; //设置"用户名"提示文字的大小 EditText etUserName (Ed…

教育硬件“老玩家”进入智能手机新赛道,小度胜算几何?

从5月8日有传言称“百度旗下小度将进军智能手机市场”&#xff0c;到5月17日小度官宣将推出旗下新物种产品——小度青禾学习手机&#xff0c;小度在短短10天时间成为市场关注的焦点。 而5月22日&#xff0c;其也拿出了真正的成果&#xff0c;这部专门为青少年打造的学习手机正…

MySQL——在Linux环境下安装(在线安装)

MySQL的安装&#xff08;在线安装&#xff09; mysql的安装并不是比赛的内容&#xff0c;所以我们用比较方便的在线安装的方法&#xff0c;比起安装&#xff0c;我们更要知道如何去使用&#xff1a; 首先看一下自己有没有安装MySQL的服务&#xff0c;或者自己的服务器上有没有…

application.yml中的配置怎么写

1.问题 application.yml中可以做很多组件的配置,比如redis,mongo, 但是这些的key是什么,value怎么写呢? 2.分析问题 为了搞清楚这个问题,我们需要先了解application.yml中的配置是怎么加载的,以MongoProperties配置加载为例, 在Spring Boot中,可以使用application.y…

【OJ比赛日历】快周末了,不来一场比赛吗? #06.03-06.09 #18场

CompHub[1] 实时聚合多平台的数据类(Kaggle、天池…)和OJ类(Leetcode、牛客…&#xff09;比赛。本账号会推送最新的比赛消息&#xff0c;欢迎关注&#xff01; 以下信息仅供参考&#xff0c;以比赛官网为准 目录 2023-06-03&#xff08;周六&#xff09; #7场比赛2023-06-04…

【数据结构】---二叉树类型部分练习解析让你更深程度了解二叉树

文章目录 前言&#x1f31f;一、第一种&#xff1a;二叉树性质类型&#xff1a;&#x1f30f;1.1 第一题&#xff1a;&#x1f4ab;1.1.1 理论&#xff1a;&#x1f4ab;1.1.2 图解&#xff1a;&#x1f4ab;1.1.3 解析&#xff1a; &#x1f30f;1.2 第二题&#xff1a;&#…

小明给大家分享几个CSDN涨粉小技巧,期待大家多多涨粉

今天和大家一起来聊聊CSDN涨粉相关几个的技巧&#xff0c;希望对热爱技术分享&#xff0c;并且想快速涨粉提升自身曝光度的朋友们提供一些经验&#xff0c;本文都是自己的一些想法&#xff0c;有说的不对的地方希望大家指正&#xff01; 一、个人介绍 我叫小明&#xff0c;我的…

京东国际销售数据查询(京东国际行业/品牌数据分析)

根据京东平台官方数据显示&#xff0c;今年京东国际的贡献力度也高于以往。 京东618开门红5分钟&#xff0c;京东国际成交额已突破去年开门红前两小时的成交额&#xff0c;跨境酒水、跨境手机通讯、跨境箱包皮具等3个品类成交额同比增长超100%。&#xff0c;开门5分钟&#xff…

Unreal5 第三人称射击游戏 角色基础制作2

接上一篇 Unreal5 第三人称射击游戏 角色基础制作1 角色蹲伏效果 上面是需要的操作映射&#xff0c;蹲伏实现&#xff0c;首先要开启相应功能&#xff0c;你需要在角色移动组件上面开启可蹲伏 蹲伏还有一些其它设置&#xff0c;比如蹲下角色高度&#xff0c;蹲下以后行走的…