案例三: MR实战之TOPN(自定义GroupingComparator)
项目准备
- 需求+测试数据
有如下订单数据
订单id | 商品id | 成交金额 |
---|---|---|
Order_0000001 | Pdt_01 | 222.8 |
Order_0000001 | Pdt_05 | 25.8 |
Order_0000002 | Pdt_03 | 522.8 |
Order_0000002 | Pdt_04 | 122.4 |
Order_0000002 | Pdt_05 | 722.4 |
Order_0000003 | Pdt_01 | 222.8 |
现在需要求出每一个订单中成交金额最大的一笔交易
-
分析
a) 利用“订单id和成交金额”作为key,可以将map阶段读取到的所有订单数据按照id分区,按照金额排序,发送到reduce
b) 在reduce端利用groupingcomparator将订单id相同的kv聚合成组,然后取第一个即是最大值
项目实现
a)自定义groupingcomparator
/**
* @Author 千锋大数据教学团队
* @Company 千锋好程序员大数据
* @Description 用于控制shuffle过程中reduce端对kv对的聚合逻辑
*/
public class ItemidGroupingComparator extends WritableComparator {
protected ItemidGroupingComparator() {
super(OrderBean.class, true);
}
@Override
public int compare(WritableComparable a, WritableComparable b) {
OrderBean abean = (OrderBean) a;
OrderBean bbean = (OrderBean) b;
//将item_id相同的bean都视为相同,从而聚合为一组
return abean.getItemid().compareTo(bbean.getItemid());
}
}
复制代码
文末扫码领取福利!
b)定义订单信息bean
/**
* @Author 千锋大数据教学团队
* @Company 千锋好程序员大数据
* @Description 订单信息bean,实现hadoop的序列化机制
*/
public class OrderBean implements WritableComparable<OrderBean>{
private Text itemid;
private DoubleWritable amount;
public OrderBean() {
}
public OrderBean(Text itemid, DoubleWritable amount) {
set(itemid, amount);
}
public void set(Text itemid, DoubleWritable amount) {
this.itemid = itemid;
this.amount = amount;
}
public Text getItemid() {
return itemid;
}
public DoubleWritable getAmount() {
return amount;
}
@Override
public int compareTo(OrderBean o) {
int cmp = this.itemid.compareTo(o.getItemid());
if (cmp == 0) {
cmp = -this.amount.compareTo(o.getAmount());
}
return cmp;
}
@Override
public void write(DataOutput out) throws IOException {
out.writeUTF(itemid.toString());
out.writeDouble(amount.get());
}
@Override
public void readFields(DataInput in) throws IOException {
String readUTF = in.readUTF();
double readDouble = in.readDouble();
this.itemid = new Text(readUTF);
this.amount= new DoubleWritable(readDouble);
}
@Override
public String toString() {
return itemid.toString() + "\t" + amount.get();
}
}
复制代码
c) 编写MapReduce处理流程
/**
* @Author 千锋大数据教学团队
* @Company 千锋好程序员大数据
* @Description 利用secondarysort机制输出每种item订单金额最大的记录
*/
public class SecondarySort {
static class SecondarySortMapper extends Mapper<LongWritable, Text, OrderBean, NullWritable>{
OrderBean bean = new OrderBean();
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String line = value.toString();
String[] fields = StringUtils.split(line, "\t");
bean.set(new Text(fields[0]), new DoubleWritable(Double.parseDouble(fields[1])));
context.write(bean, NullWritable.get());
}
}
static class SecondarySortReducer extends Reducer<OrderBean, NullWritable, OrderBean, NullWritable>{
//在设置了groupingcomparator以后,这里收到的kv数据 就是: <1001 87.6>,null <1001 76.5>,null ....
//此时,reduce方法中的参数key就是上述kv组中的第一个kv的key:<1001 87.6>
//要输出同一个item的所有订单中最大金额的那一个,就只要输出这个key
@Override
protected void reduce(OrderBean key, Iterable<NullWritable> values, Context context) throws IOException, InterruptedException {
context.write(key, NullWritable.get());
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
job.setJarByClass(SecondarySort.class);
job.setMapperClass(SecondarySortMapper.class);
job.setReducerClass(SecondarySortReducer.class);
job.setOutputKeyClass(OrderBean.class);
job.setOutputValueClass(NullWritable.class);
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
//指定shuffle所使用的GroupingComparator类
job.setGroupingComparatorClass(ItemidGroupingComparator.class);
//指定shuffle所使用的partitioner类
job.setPartitionerClass(ItemIdPartitioner.class);
job.setNumReduceTasks(3);
job.waitForCompletion(true);
}
}
也可以观看视频:
千锋大数据Hadoop全新增强版-先导片