【MATLAB第34期】基于MATLAB的2023年棕熊优化算法BOA优化LSTM时间序列预测模型 优势明显,注释详细,绘图丰富,适合小白
一、代码优势
1.使用2023年棕熊算法BOA优化LSTM超参数(学习率,隐藏层节点,正则化系数,训练次数)
2.目标函数考虑训练集和测试集,更加合理;运行结果稳定,可直接调用结果,且调用结果非常方便。
3.滑动窗口方法处理单列时间序列数据,考虑历史数据的影响。
4.代码一体化,一键运行;注释丰富,评价指标丰富,逻辑清晰,适合小白学习。
5.代码绘图丰富(除基础绘图以外,还包括训练LOSS图、超参数迭代图)、美观
6.命令行窗口可见运行过程的结果.
7.参数可在代码中设置,方便调试;优化超参数可以根据需求更改 。
举例:
1.绘图美观,且包含对超参数随迭代次数变化的研究。
2.代码方便计算和调用,只需要在fun函数后面加超参数组合,就能得到结果。
[fitness1,net1,res1,info1] = fun([0.005,50,0.005,50]); % 基础参数取值(学习率,隐藏层节点,正则化系数,训练次数)
二、后期研究计划
后续将在博文中更新更丰富、功能更完整的作品,敬请期待。
1.多层LSTM结构优化,含单向LSTM/GRU和双向Bilstm混合模型
2.更多超参数优化,含结构层数量、隐含层节点数、最小批处理数量、时间步数等
3.含预测未来功能
4.更多新的算法以及在基础上改进算法对比。
5.loss内置函数修改
6.多场景应用(分类、回归、多输入多输出等等)
三、代码展示
%% 1.清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 2.导入数据(时间序列的单列数据)
result = xlsread('数据集.xlsx');
%% 3.数据分析
num_samples = length(result); % 样本个数
kim = 15; % 延时步长(kim个历史数据作为自变量)
zim = 1; % 跨zim个时间点进行预测
%% 4.划分数据集
for i = 1: num_samples - kim - zim + 1
res(i, :) = [reshape(result(i: i + kim - 1), 1, kim), result(i + kim + zim - 1)];
end
%% 5.数据集分析
outdim = 1; % 最后一列为输出
num_size = 0.7; % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim; % 输入特征维度
%% 6.划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);
P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);
%% 7.数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);
[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
%% 8.数据平铺
% 将数据平铺成1维数据只是一种处理方式
% 也可以平铺成2维数据,以及3维数据,需要修改对应模型结构
% 但是应该始终和输入层数据结构保持一致
P_train = double(reshape(P_train, f_, 1, 1, M));
P_test = double(reshape(P_test , f_, 1, 1, N));
t_train = t_train';
t_test = t_test' ;
%% 9.数据格式转换
for i = 1 : M
p_train{i, 1} = P_train(:, :, 1, i);
end
for i = 1 : N
p_test{i, 1} = P_test( :, :, 1, i);
end
%% 10.优化算法参数设置
SearchAgents_no = 5; % 种群数量
Max_iteration = 5; % 最大迭代次数
dim = 4; % 优化参数个数
lb = [1e-3, 10, 1e-4,20]; % 参数取值下界(学习率,隐藏层节点,正则化系数,训练次数)
ub = [1e-2, 80, 1e-3,100]; % 参数取值上界(学习率,隐藏层节点,正则化系数,训练次数)
fobj=@(x)fun(x); %适应度函数
%% 11.优化算法初始化
[Best_sol,Best_X,Convergence,BestNet,pos_curve]=BOA(SearchAgents_no,dim,Max_iteration,lb,ub,fobj)
%% 12.优化前LSTM运行结果
[fitness1,net1,res1,info1] = fun([0.005,50,0.005,50]); % 基础参数取值(学习率,隐藏层节点,正则化系数,训练次数)
predict_value1=res1.predict_value1;
predict_value2=res1.predict_value2;
true_value1=res1.true_value1;
true_value2=res1.true_value2;
i=1;
disp('-------------------------------------------------------------')
disp('LSTM结果:')
rmse1=sqrt(mean((true_value1(i,:)-predict_value1(i,:)).^2));
disp(['LSTM训练集根均方差(RMSE):',num2str(rmse1)])
mae1=mean(abs(true_value1(i,:)-predict_value1(i,:)));
disp(['LSTM训练集平均绝对误差(MAE):',num2str(mae1)])
mape1=mean(abs((true_value1(i,:)-predict_value1(i,:))./true_value1(i,:)));
disp(['LSTM训练集平均相对百分误差(MAPE):',num2str(mape1*100),'%'])
r2_1=R2(true_value1(i,:),predict_value1(i,:));
disp(['LSTM训练集R-square决定系数(R2):',num2str(r2_1)])
rmse2=sqrt(mean((true_value2(i,:)-predict_value2(i,:)).^2));
disp(['LSTM测试集根均方差(RMSE):',num2str(rmse2)])
mae2=mean(abs(true_value2(i,:)-predict_value2(i,:)));
disp(['LSTM测试集平均绝对误差(MAE):',num2str(mae2)])
mape2=mean(abs((true_value2(i,:)-predict_value2(i,:))./true_value2(i,:)));
disp(['LSTM测试集平均相对百分误差(MAPE):',num2str(mape2*100),'%'])
r2_2=R2(true_value2(i,:),predict_value2(i,:));
disp(['LSTM测试集R-square决定系数(R2):',num2str(r2_2)])
%% 13. 绘图
%% 14.优化后BOA-LSTM运行结果
[fitness2,net2,res2,info2] = fun(Best_X); % 基础参数取值(学习率,隐藏层节点,正则化系数,训练次数)
i=1;
disp('-------------------------------------------------------------')
disp('BOA-LSTM结果:')
disp('BOA-LSTM优化得到的最优参数为:')
disp(['BOA-LSTM优化得到的隐藏单元数目为:',num2str(round(Best_X(2)))]);
disp(['BOA-LSTM优化得到的最大训练周期为:',num2str(round(Best_X(4)))]);
disp(['BOA-LSTM优化得到的InitialLearnRate为:',num2str((Best_X(1)))]);
disp(['BOA-LSTM优化得到的L2Regularization为:',num2str((Best_X(3)))]);
op_rmse1=sqrt(mean((op_true_value1(i,:)-op_predict_value1(i,:)).^2));
disp(['BOA-LSTM训练集根均方差(RMSE):',num2str(op_rmse1)])
op_mae1=mean(abs(op_true_value1(i,:)-op_predict_value1(i,:)));
disp(['BOA-LSTM训练集平均绝对误差(MAE):',num2str(op_mae1)])
op_mape1=mean(abs((op_true_value1(i,:)-op_predict_value1(i,:))./op_true_value1(i,:)));
disp(['BOA-LSTM训练集平均相对百分误差(MAPE):',num2str(op_mape1*100),'%'])
op_r2_1=R2(op_true_value1(i,:),op_predict_value1(i,:));
disp(['BOA-LSTM训练集R-square决定系数(R2):',num2str(op_r2_1)])
op_rmse2=sqrt(mean((op_true_value2(i,:)-op_predict_value2(i,:)).^2));
disp(['BOA-LSTM测试集根均方差(RMSE):',num2str(op_rmse2)])
op_mae2=mean(abs(op_true_value2(i,:)-op_predict_value2(i,:)));
disp(['BOA-LSTM测试集平均绝对误差(MAE):',num2str(op_mae2)])
op_mape2=mean(abs((op_true_value2(i,:)-op_predict_value2(i,:))./op_true_value2(i,:)));
disp(['BOA-LSTM测试集平均相对百分误差(MAPE):',num2str(op_mape2*100),'%'])
op_r2_2=R2(op_true_value2(i,:),op_predict_value2(i,:));
disp(['BOA-LSTM测试集R-square决定系数(R2):',num2str(op_r2_2)])
%% 15.BOA-LSTM绘图
四、运行结果
LSTM结果:
LSTM训练集根均方差(RMSE):0.023407
LSTM训练集平均绝对误差(MAE):0.01781
LSTM训练集平均相对百分误差(MAPE):2.9834%
LSTM训练集R-square决定系数(R2):0.95768
LSTM测试集根均方差(RMSE):0.024046
LSTM测试集平均绝对误差(MAE):0.01902
LSTM测试集平均相对百分误差(MAPE):3.2605%
LSTM测试集R-square决定系数(R2):0.78619
BOA-LSTM结果:
BOA-LSTM优化得到的最优参数为:
BOA-LSTM优化得到的隐藏单元数目为:30
BOA-LSTM优化得到的最大训练周期为:59
BOA-LSTM优化得到的InitialLearnRate为:0.0060983
BOA-LSTM优化得到的L2Regularization为:0.00035327
BOA-LSTM训练集根均方差(RMSE):0.012984
BOA-LSTM训练集平均绝对误差(MAE):0.009747
BOA-LSTM训练集平均相对百分误差(MAPE):1.6228%
BOA-LSTM训练集R-square决定系数(R2):0.98596
BOA-LSTM测试集根均方差(RMSE):0.015044
BOA-LSTM测试集平均绝对误差(MAE):0.011762
BOA-LSTM测试集平均相对百分误差(MAPE):1.9885%
BOA-LSTM测试集R-square决定系数(R2):0.9183
五、代码获取
后台私信回复“34期”即可获取下载链接。