YOLOv5区域检测计数+声音警报

news2025/1/16 4:44:07

YOLOv5区域检测计数+声音警报

  • 1. 相关配置
  • 2. 检测区域设置
  • 3. 画检测区域线(不想显示也可以不画)
  • 4. 报警模块
  • 5. 计数模块
  • 6. 代码修改
    • 6.1 主代码
    • 6.2 细节修改(可忽略)
  • 6. 实验效果

本篇博文工程源码下载
链接1:https://github.com/up-up-up-up/yolov5-area-detection( 求 STAR )
链接2:https://pan.baidu.com/s/1WFVMow_-4M5Cc6P3nY63Sw?pwd=nucv

具体实现效果已在Bilibili发布,点击跳转

1. 相关配置

系统:win 10
YOLO版本:yolov5 6.1
电脑显卡:NVIDIA 2080Ti(CPU也可以跑,GPU只是起到加速推理效果)

2. 检测区域设置

设置区域范围由四个点围成,四个点的坐标分别为(wl1,hl1),(wl2,hl2),(wl3,hl3),(wl4,hl4)

 # 1,2,3,4分别代表左上,右上,右下,左下四个点坐标,即(480,270)(700,270)(700,810)(480,810)
hl1 = 270 / 1080  # 左上纵坐标/图片高度
wl1 = 480 / 1920  # 左上横坐标/图片宽度
hl2 = 270 / 1080  # 右上横坐标/图片宽度
wl2 = 700 / 1920  # 右上横坐标/图片宽度
hl3 = 810 / 1080  # 右下横坐标/图片宽度
wl3 = 700 / 1920  # 右下横坐标/图片宽度
hl4 = 810 / 1080  # 左下横坐标/图片宽度
wl4 = 480 / 1920  # 左下横坐标/图片宽度

请添加图片描述
具体把这部分代码加在了摄像头循环 for path, im, im0s, vid_cap, s in dataset 下:

for path, im, im0s, vid_cap, s in dataset:
    # 1,2,3,4分别代表左上,右上,右下,左下四个点坐标,即(480,270)(700,270)(700,810)(480,810)
    hl1 = 270 / 1080  # 左上纵坐标/图片高度
    wl1 = 480 / 1920  # 左上横坐标/图片宽度
    hl2 = 270 / 1080  # 右上横坐标/图片宽度
    wl2 = 700 / 1920  # 右上横坐标/图片宽度
    hl3 = 810 / 1080  # 右下横坐标/图片宽度
    wl3 = 700 / 1920  # 右下横坐标/图片宽度
    hl4 = 810 / 1080  # 左下横坐标/图片宽度
    wl4 = 480 / 1920  # 左下横坐标/图片宽度
    if webcam:
        for b in range(0, im.shape[0]):
            mask = np.zeros([im[b].shape[1], im[b].shape[2]], dtype=np.uint8)
            # mask[round(img[b].shape[1] * hl1):img[b].shape[1], round(img[b].shape[2] * wl1):img[b].shape[2]] = 255
            pts = np.array([[int(im[b].shape[2] * wl1), int(im[b].shape[1] * hl1)],  # pts1
                            [int(im[b].shape[2] * wl2), int(im[b].shape[1] * hl2)],  # pts2
                            [int(im[b].shape[2] * wl3), int(im[b].shape[1] * hl3)],  # pts3
                            [int(im[b].shape[2] * wl4), int(im[b].shape[1] * hl4)]], np.int32) # 将四个点坐标存储为数组形式
            mask = cv2.fillPoly(mask, [pts], (255, 255, 255))  # 设置四个点围成的区域为分割区域
            imgc = im[b].transpose((1, 2, 0))
            imgc = cv2.add(imgc, np.zeros(np.shape(imgc), dtype=np.uint8), mask=mask)  #将分割区域添加进图像中
            # cv2.imshow('1',imgc)
            im[b] = imgc.transpose((2, 0, 1))

    else:
        mask = np.zeros([im.shape[1], im.shape[2]], dtype=np.uint8)
        # mask[round(img.shape[1] * hl1):img.shape[1], round(img.shape[2] * wl1):img.shape[2]] = 255
        pts = np.array([[int(im.shape[2] * wl1), int(im.shape[1] * hl1)],  # pts1
                        [int(im.shape[2] * wl2), int(im.shape[1] * hl2)],  # pts2
                        [int(im.shape[2] * wl3), int(im.shape[1] * hl3)],  # pts3
                        [int(im.shape[2] * wl4), int(im.shape[1] * hl4)]], np.int32)
        mask = cv2.fillPoly(mask, [pts], (255, 255, 255))
        img = im.transpose((1, 2, 0))
        img = cv2.add(img, np.zeros(np.shape(img), dtype=np.uint8), mask=mask)
        im = img.transpose((2, 0, 1))

3. 画检测区域线(不想显示也可以不画)

在 for i, det in enumerate(pred) 后添加以下代码:

for i, det in enumerate(pred):  # per image
    seen += 1
    if webcam:  # batch_size >= 1
        p, im0, frame = path[i], im0s[i].copy(), dataset.count
        s += f'{i}: '
        cv2.putText(im0, "Detection_Region", (int(im0.shape[1] * wl1 - 5), int(im0.shape[0] * hl1 - 5)),
                    cv2.FONT_HERSHEY_SIMPLEX,
                    1.0, (255, 255, 0), 2, cv2.LINE_AA) # 将 Detection_Region 这几个字写进图片

        pts = np.array([[int(im0.shape[1] * wl1), int(im0.shape[0] * hl1)],  # pts1
                        [int(im0.shape[1] * wl2), int(im0.shape[0] * hl2)],  # pts2
                        [int(im0.shape[1] * wl3), int(im0.shape[0] * hl3)],  # pts3
                        [int(im0.shape[1] * wl4), int(im0.shape[0] * hl4)]], np.int32)  # pts4,将四个点坐标存储为数组
        # pts = pts.reshape((-1, 1, 2))
        zeros = np.zeros((im0.shape), dtype=np.uint8)
        mask = cv2.fillPoly(zeros, [pts], color=(0, 165, 255))  # 将分割区域填充为浅蓝色
        im0 = cv2.addWeighted(im0, 1, mask, 0.2, 0)   # 在图上显示
        cv2.polylines(im0, [pts], True, (255, 255, 0), 3)   # 画边框线

    else:
        p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
        cv2.putText(im0, "Detection_Region", (int(im0.shape[1] * wl1 - 5), int(im0.shape[0] * hl1 - 5)),
                    cv2.FONT_HERSHEY_SIMPLEX,
                    1.0, (255, 255, 0), 2, cv2.LINE_AA)
        pts = np.array([[int(im0.shape[1] * wl1), int(im0.shape[0] * hl1)],  # pts1
                        [int(im0.shape[1] * wl2), int(im0.shape[0] * hl2)],  # pts2
                        [int(im0.shape[1] * wl3), int(im0.shape[0] * hl3)],  # pts3
                        [int(im0.shape[1] * wl4), int(im0.shape[0] * hl4)]], np.int32)  # pts4
        # pts = pts.reshape((-1, 1, 2))
        zeros = np.zeros((im0.shape), dtype=np.uint8)
        mask = cv2.fillPoly(zeros, [pts], color=(0, 165, 255))
        im0 = cv2.addWeighted(im0, 1, mask, 0.2, 0)
        cv2.polylines(im0, [pts], True, (255, 255, 0), 3)

4. 报警模块

当画框区域里检测到行人,进行报警

if save_img or save_crop or view_img:  # Add bbox to image
    if names[int(cls)] == "person":
        c = int(cls)  # integer class
        label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
        annotator.box_label(xyxy, label, color=colors(c, True))
        pygame.mixer.init()   # 初始化
        pygame.mixer.music.load('out.wav')  # 加载音频out.wav文件
        pygame.mixer.music.set_volume(1)  # 设置音量
        pygame.mixer.music.play()   # 播放音效
        if save_crop:
            save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)

5. 计数模块

首先定义一个全局变量person_count,具体写在if len(det)上方,需要注意这个全局变量需要与if view_img和if save_img同梯度,#111是我添加的代码

global person_count  # 111
person_count = 0   # 111
p = Path(p)  # to Path
save_path = str(save_dir / p.name)  # im.jpg
txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}')  # im.txt
s += '%gx%g ' % im.shape[2:]  # print string
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh
imc = im0.copy() if save_crop else im0  # for save_crop
annotator = Annotator(im0, line_width=line_thickness, example=str(names))
if len(det):
    # Rescale boxes from img_size to im0 size
    det[:, :4] = scale_coords(im.shape[2:], det[:, :4], im0.shape).round()
    # Print results
    for c in det[:, -1].unique():
        n = (det[:, -1] == c).sum()  # detections per class
        s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string

然后在if save_img or save_crop or view_img添加计数

for *xyxy, conf, cls in reversed(det):
    if save_txt:  # Write to file
        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
        line = (cls, *xywh, conf) if save_conf else (cls, *xywh)  # label format
        with open(txt_path + '.txt', 'a') as f:
            f.write(('%g ' * len(line)).rstrip() % line + '\n')

    if save_img or save_crop or view_img:  # Add bbox to image
        if names[int(cls)] == "person":
            c = int(cls)  # integer class
            label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
            annotator.box_label(xyxy, label, color=colors(c, True))
            person_count += 1                            # 111
            pygame.mixer.init()
            pygame.mixer.music.load('out.wav')
            pygame.mixer.music.set_volume(1)
            pygame.mixer.music.play()

最后在view_img和save_img里画图显示

# Stream results
im0 = annotator.result()
if view_img:
    text = 'person_num:%d ' % (person_count)         # 111
    cv2.putText(im0, text, (180, 50), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 255), 3)      # 111
    cv2.namedWindow("Webcam", cv2.WINDOW_NORMAL)
    cv2.resizeWindow("Webcam", 1280, 720)
    cv2.moveWindow("Webcam", 0, 100)
    cv2.imshow("Webcam", im0)
    cv2.waitKey(1)

# Save results (image with detections)
if save_img:
    text = 'person_num:%d ' % (person_count)       # 111
    cv2.putText(im0, text, (180, 50), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 255), 3)     # 111
    if dataset.mode == 'image':
        cv2.imwrite(save_path, im0)
    else:  # 'video' or 'stream'
        if vid_path[i] != save_path:  # new video
            vid_path[i] = save_path
            if isinstance(vid_writer[i], cv2.VideoWriter):
                vid_writer[i].release()  # release previous video writer
            if vid_cap:  # video
                fps = vid_cap.get(cv2.CAP_PROP_FPS)
                w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
            else:  # stream
                fps, w, h = 30, im0.shape[1], im0.shape[0]
            save_path = str(Path(save_path).with_suffix('.mp4'))  # force *.mp4 suffix on results videos
            vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
        vid_writer[i].write(im0)

6. 代码修改

6.1 主代码

import argparse
import os
import sys
from pathlib import Path

import cv2
import numpy as np
import pygame
import torch
import torch.backends.cudnn as cudnn

FILE = Path(__file__).resolve()
ROOT = FILE.parents[0]  # YOLOv5 root directory
if str(ROOT) not in sys.path:
    sys.path.append(str(ROOT))  # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative

from models.common import DetectMultiBackend
from utils.datasets import IMG_FORMATS, VID_FORMATS, LoadImages, LoadStreams
from utils.general import (LOGGER, check_file, check_img_size, check_imshow, check_requirements, colorstr,
                           increment_path, non_max_suppression, print_args, scale_coords, strip_optimizer, xyxy2xywh)
from utils.plots import Annotator, colors, save_one_box
from utils.torch_utils import select_device, time_sync


@torch.no_grad()
def run(weights=ROOT / 'yolov5s.pt',  # model.pt path(s)
        source=ROOT / 'data/images',  # file/dir/URL/glob, 0 for webcam
        data=ROOT / 'data/coco128.yaml',  # dataset.yaml path
        imgsz=(640, 640),  # inference size (height, width)
        conf_thres=0.25,  # confidence threshold
        iou_thres=0.45,  # NMS IOU threshold
        max_det=1000,  # maximum detections per image
        device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
        view_img=False,  # show results
        save_txt=False,  # save results to *.txt
        save_conf=False,  # save confidences in --save-txt labels
        save_crop=False,  # save cropped prediction boxes
        nosave=False,  # do not save images/videos
        classes=None,  # filter by class: --class 0, or --class 0 2 3
        agnostic_nms=False,  # class-agnostic NMS
        augment=False,  # augmented inference
        visualize=False,  # visualize features
        update=False,  # update all models
        project=ROOT / 'runs/detect',  # save results to project/name
        name='exp',  # save results to project/name
        exist_ok=False,  # existing project/name ok, do not increment
        line_thickness=3,  # bounding box thickness (pixels)
        hide_labels=False,  # hide labels
        hide_conf=False,  # hide confidences
        half=False,  # use FP16 half-precision inference
        dnn=False,  # use OpenCV DNN for ONNX inference
        ):

    source = str(source)
    save_img = not nosave and not source.endswith('.txt')  # save inference images
    is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
    is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
    webcam = source.isnumeric() or source.endswith('.txt') or (is_url and not is_file)
    if is_url and is_file:
        source = check_file(source)  # download

    # Directories
    save_dir = increment_path(Path(project) / name, exist_ok=exist_ok)  # increment run
    (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir

    # Load model
    device = select_device(device)
    model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data)
    stride, names, pt, jit, onnx, engine = model.stride, model.names, model.pt, model.jit, model.onnx, model.engine
    imgsz = check_img_size(imgsz, s=stride)  # check image size

    # Half
    half &= (pt or jit or onnx or engine) and device.type != 'cpu'  # FP16 supported on limited backends with CUDA
    if pt or jit:
        model.model.half() if half else model.model.float()


    # Dataloader
    if webcam:
        view_img = check_imshow()
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt)
        bs = len(dataset)  # batch_size
    else:
        dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt)
        bs = 1  # batch_size
    vid_path, vid_writer = [None] * bs, [None] * bs

    # Run inference
    model.warmup(imgsz=(1 if pt else bs, 3, *imgsz), half=half)  # warmup
    dt, seen = [0.0, 0.0, 0.0], 0
    for path, im, im0s, vid_cap, s in dataset:
        # 1,2,3,4分别代表左上,右上,右下,左下四个点坐标,即(480,270)(700,270)(700,810)(480,810)
        hl1 = 270 / 1080  # 左上纵坐标/图片高度
        wl1 = 620 / 1920  # 左上横坐标/图片宽度
        hl2 = 270 / 1080  # 右上横坐标/图片宽度
        wl2 = 820 / 1920  # 右上横坐标/图片宽度
        hl3 = 630 / 1080  # 右下横坐标/图片宽度
        wl3 = 820 / 1920  # 右下横坐标/图片宽度
        hl4 = 630 / 1080  # 左下横坐标/图片宽度
        wl4 = 620 / 1920  # 左下横坐标/图片宽度
        if webcam:
            for b in range(0, im.shape[0]):
                mask = np.zeros([im[b].shape[1], im[b].shape[2]], dtype=np.uint8)
                # mask[round(img[b].shape[1] * hl1):img[b].shape[1], round(img[b].shape[2] * wl1):img[b].shape[2]] = 255
                pts = np.array([[int(im[b].shape[2] * wl1), int(im[b].shape[1] * hl1)],  # pts1
                                [int(im[b].shape[2] * wl2), int(im[b].shape[1] * hl2)],  # pts2
                                [int(im[b].shape[2] * wl3), int(im[b].shape[1] * hl3)],  # pts3
                                [int(im[b].shape[2] * wl4), int(im[b].shape[1] * hl4)]], np.int32)
                mask = cv2.fillPoly(mask, [pts], (255, 255, 255))
                imgc = im[b].transpose((1, 2, 0))
                imgc = cv2.add(imgc, np.zeros(np.shape(imgc), dtype=np.uint8), mask=mask)
                # cv2.imshow('1',imgc)
                im[b] = imgc.transpose((2, 0, 1))

        else:
            mask = np.zeros([im.shape[1], im.shape[2]], dtype=np.uint8)
            # mask[round(img.shape[1] * hl1):img.shape[1], round(img.shape[2] * wl1):img.shape[2]] = 255
            pts = np.array([[int(im.shape[2] * wl1), int(im.shape[1] * hl1)],  # pts1
                            [int(im.shape[2] * wl2), int(im.shape[1] * hl2)],  # pts2
                            [int(im.shape[2] * wl3), int(im.shape[1] * hl3)],  # pts3
                            [int(im.shape[2] * wl4), int(im.shape[1] * hl4)]], np.int32)
            mask = cv2.fillPoly(mask, [pts], (255, 255, 255))
            img = im.transpose((1, 2, 0))
            img = cv2.add(img, np.zeros(np.shape(img), dtype=np.uint8), mask=mask)
            im = img.transpose((2, 0, 1))


        t1 = time_sync()
        im = torch.from_numpy(im).to(device)
        im = im.half() if half else im.float()  # uint8 to fp16/32
        im /= 255  # 0 - 255 to 0.0 - 1.0
        if len(im.shape) == 3:
            im = im[None]  # expand for batch dim
        t2 = time_sync()
        dt[0] += t2 - t1

        # Inference
        visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
        pred = model(im, augment=augment, visualize=visualize)
        t3 = time_sync()
        dt[1] += t3 - t2

        # NMS
        pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
        dt[2] += time_sync() - t3

        # Second-stage classifier (optional)
        # pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)

        # Process predictions
        for i, det in enumerate(pred):  # per image
            seen += 1
            if webcam:  # batch_size >= 1
                p, im0, frame = path[i], im0s[i].copy(), dataset.count
                s += f'{i}: '
                cv2.putText(im0, "Detection_Region", (int(im0.shape[1] * wl1 - 5), int(im0.shape[0] * hl1 - 5)),
                            cv2.FONT_HERSHEY_SIMPLEX,
                            1.0, (255, 255, 0), 2, cv2.LINE_AA)

                pts = np.array([[int(im0.shape[1] * wl1), int(im0.shape[0] * hl1)],  # pts1
                                [int(im0.shape[1] * wl2), int(im0.shape[0] * hl2)],  # pts2
                                [int(im0.shape[1] * wl3), int(im0.shape[0] * hl3)],  # pts3
                                [int(im0.shape[1] * wl4), int(im0.shape[0] * hl4)]], np.int32)  # pts4
                # pts = pts.reshape((-1, 1, 2))
                zeros = np.zeros((im0.shape), dtype=np.uint8)
                mask = cv2.fillPoly(zeros, [pts], color=(0, 165, 255))
                im0 = cv2.addWeighted(im0, 1, mask, 0.2, 0)
                cv2.polylines(im0, [pts], True, (255, 255, 0), 3)

            else:
                p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
                cv2.putText(im0, "Detection_Region", (int(im0.shape[1] * wl1 - 5), int(im0.shape[0] * hl1 - 5)),
                            cv2.FONT_HERSHEY_SIMPLEX,
                            1.0, (255, 255, 0), 2, cv2.LINE_AA)
                pts = np.array([[int(im0.shape[1] * wl1), int(im0.shape[0] * hl1)],  # pts1
                                [int(im0.shape[1] * wl2), int(im0.shape[0] * hl2)],  # pts2
                                [int(im0.shape[1] * wl3), int(im0.shape[0] * hl3)],  # pts3
                                [int(im0.shape[1] * wl4), int(im0.shape[0] * hl4)]], np.int32)  # pts4
                # pts = pts.reshape((-1, 1, 2))
                zeros = np.zeros((im0.shape), dtype=np.uint8)
                mask = cv2.fillPoly(zeros, [pts], color=(0, 165, 255))
                im0 = cv2.addWeighted(im0, 1, mask, 0.2, 0)
                cv2.polylines(im0, [pts], True, (255, 255, 0), 3)

            global person_count
            person_count = 0
            p = Path(p)  # to Path
            save_path = str(save_dir / p.name)  # im.jpg
            txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}')  # im.txt
            s += '%gx%g ' % im.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh
            imc = im0.copy() if save_crop else im0  # for save_crop
            annotator = Annotator(im0, line_width=line_thickness, example=str(names))
            if len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(im.shape[2:], det[:, :4], im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string

                # Write results

                for *xyxy, conf, cls in reversed(det):
                    if save_txt:  # Write to file
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
                        line = (cls, *xywh, conf) if save_conf else (cls, *xywh)  # label format
                        with open(txt_path + '.txt', 'a') as f:
                            f.write(('%g ' * len(line)).rstrip() % line + '\n')

                    if save_img or save_crop or view_img:  # Add bbox to image
                        if names[int(cls)] == "person":
                            c = int(cls)  # integer class
                            label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
                            annotator.box_label(xyxy, label, color=colors(c, True))
                            person_count += 1
                            pygame.mixer.init()
                            pygame.mixer.music.load('out.wav')
                            pygame.mixer.music.set_volume(1)
                            pygame.mixer.music.play()

                            if save_crop:
                                save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)

            # Stream results
            im0 = annotator.result()
            if view_img:
                text = 'person_num:%d ' % (person_count)
                cv2.putText(im0, text, (180, 50), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 255), 3)

                cv2.namedWindow("Webcam", cv2.WINDOW_NORMAL)
                cv2.resizeWindow("Webcam", 1280, 720)
                cv2.moveWindow("Webcam", 0, 100)
                cv2.imshow("Webcam", im0)
                cv2.waitKey(1)

            # Save results (image with detections)
            if save_img:
                text = 'person_num:%d ' % (person_count)
                cv2.putText(im0, text, (180, 50), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 255), 3)
                #text = 'tie_num:%d ' % (tie_count)
                #cv2.putText(im0, text, (180, 120), cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 0, 0), 5)
                if dataset.mode == 'image':
                    cv2.imwrite(save_path, im0)
                else:  # 'video' or 'stream'
                    if vid_path[i] != save_path:  # new video
                        vid_path[i] = save_path
                        if isinstance(vid_writer[i], cv2.VideoWriter):
                            vid_writer[i].release()  # release previous video writer
                        if vid_cap:  # video
                            fps = vid_cap.get(cv2.CAP_PROP_FPS)
                            w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                            h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        else:  # stream
                            fps, w, h = 30, im0.shape[1], im0.shape[0]
                        save_path = str(Path(save_path).with_suffix('.mp4'))  # force *.mp4 suffix on results videos
                        vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
                    vid_writer[i].write(im0)

        # Print time (inference-only)
        LOGGER.info(f'{s}Done. ({t3 - t2:.3f}s)')

    # Print results
    t = tuple(x / seen * 1E3 for x in dt)  # speeds per image
    LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
    if save_txt or save_img:
        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
        LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
    if update:
        strip_optimizer(weights)  # update model (to fix SourceChangeWarning)


def parse_opt():
    parser = argparse.ArgumentParser()
    parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model path(s)')
    parser.add_argument('--source', type=str, default=ROOT / './data/images/1.mp4', help='file/dir/URL/glob, 0 for webcam')
    parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='(optional) dataset.yaml path')
    parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
    parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold')
    parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')
    parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image')
    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
    parser.add_argument('--view-img', action='store_true',default=True, help='show results')
    parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
    parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
    parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
    parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
    parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3')
    parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
    parser.add_argument('--augment', action='store_true', help='augmented inference')
    parser.add_argument('--visualize', action='store_true', help='visualize features')
    parser.add_argument('--update', action='store_true', help='update all models')
    parser.add_argument('--project', default=ROOT / 'runs/detect', help='save results to project/name')
    parser.add_argument('--name', default='exp', help='save results to project/name')
    parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
    parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')
    parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')
    parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
    parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
    parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
    opt = parser.parse_args()
    opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1  # expand
    print_args(FILE.stem, opt)
    return opt


def main(opt):
    check_requirements(exclude=('tensorboard', 'thop'))
    run(**vars(opt))


if __name__ == "__main__":
    opt = parse_opt()
    main(opt)

6.2 细节修改(可忽略)

到上述步骤就已经实现了单目测距过程,下边是一些小细节修改,可以不看
为了实时显示画面,对运行的py文件点击编辑配置,在形参那里输入–view-img --save-txt
在这里插入图片描述
但实时显示画面太大,我们对显示部分做了修改,这部分也可以不要,具体是把代码

if view_img:
      cv2.imshow(str(p), im0)
      cv2.waitKey(1)  # 1 millisecond

替换成

if view_img:
     cv2.namedWindow("Webcam", cv2.WINDOW_NORMAL)
     cv2.resizeWindow("Webcam", 1280, 720)
     cv2.moveWindow("Webcam", 0, 100)
     cv2.imshow("Webcam", im0)
     cv2.waitKey(1)

6. 实验效果

图片效果
请添加图片描述

视频效果

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/557541.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

docker 的yum安装

目录 一、配置docker官方的yum仓库 1)安装工具yum-utils 2)调用yum-utils工具的命令 yum-config-manager 添加 docker官方的社区版yum仓库 二、docker版本选择安装 1、查看docker发布的版本 2、yum 安装docker 3、启动服务,设置开机启…

腾讯云服务器地域怎么选?不同地域有什么区别?

腾讯云服务器地域有什么区别?怎么选择比较好?地域选择就近原则,距离地域越近网络延迟越低,速度越快。关于地域的选择还有很多因素,地域节点选择还要考虑到网络延迟速度方面、内网连接、是否需要备案、不同地域成本因素…

逆波兰算法

目录 介绍一下逆波兰算法 能举一个逆波兰算法应用的运算示例吗? 介绍一下逆波兰算法 逆波兰算法,也称为后缀表达式算法或逆波兰记法,是一种用于计算数学表达式的算法。与常见的中缀表达式(如 3 4)不同,逆…

系统设计 - 设计一个速率限制器

实施速率限制器的位置主要取决于我们的应用程序、技术栈、技术团队等因素。通常有三个位置可供选择:客户端、服务器端或中间件。 客户端是不可靠的地方来执行速率限制,因为恶意行为者可以轻易伪造客户端请求。 比将速率限制器放在服务器端更好的方法是使…

海量视频处理的应对和算法实践

随着短视频、直播、智慧城市、5G等的快速发展,视频内容铺天盖地,五花八门,相应的处理需求也多种多样。如何能高效地应对?需要在数据处理系统,底层计算能力,以及算法研究等多方面协同努力。LiveVideoStackCo…

深度:ChatGPT只是表面的喧嚣,大模型才是那柄尖刀!

‍数据智能产业创新服务媒体 ——聚焦数智 改变商业 如果把时钟拨到2023年底,当我们回过头来看今年科技界最激动人心的大事件,ChatGPT的横空出世无疑会占据一席之地。就像几年前大家被谷歌AlphaGo点燃对人工智能的热情一样,人们对ChatGPT的热…

安装 Jenkins 2.346.3 LTS

环境: apache-tomcat-8.5.88 Jenkins 2.346.3 LTS Running Jenkins system Jenkins requires Java 11 or 17 since Jenkins 2.357 and LTS 2.361.1. Read more about this in the announcement blog post. https://www.jenkins.io/doc/administration/requirement…

SSM_jsp游戏-账-号-装-备虚拟物品交易系统

开发语言:Java 框架:ssm 前端框架:jsp/Bootstrap JDK版本:JDK1.8 服务器:tomcat8 数据库工具:Navicat 开发软件:idea 支持eclipse 游戏账号交易系统主要是为了提高工作人员的工作效率和更方便快捷的满足用户…

AIPRM for ChatGPT 是一个 Chrome 浏览器扩展程序

AIPRM for ChatGPT 是一个 Chrome 浏览器扩展程序,基于 Chromium 内核开发的浏览器,都可以使用该扩展,比如微软的 Edge 浏览器等。 在 AIPRM 的帮助下,我们可以在 ChatGPT 中一键使用各种专门为网站 SEO、SaaS、营销、艺术、编程…

ZBX_NOTSUPPORTED: Unsupported item key.

问题 ZBX_NOTSUPPORTED: Unsupported item key. 详细问题 笔者安装zabbix后,自定义item key进行测试。需在zabbix-server 端 切换目录: cd /usr/local/zabbix/bin 执行查询命令: ./zabbix_get -s 192.168.174.136 -p 10050 -k “home.file…

学编程遇到问题,如何更好地提问?

入门教程、案例源码、学习资料、读者群 请访问: python666.cn 大家好,欢迎来到 Crossin的编程教室 ! 一个编程学习者,尤其是刚入门的初学者,在学习过程中必然会遇到各种问题,于是难免需要向人提问寻求解答。…

让AI替你打工?GPT提升开发效率指南

👉腾小云导读 开发者日常的整个工作流中,AI 大模型能做什么?ChatGPT 等 AI 大模型能不能通过开发者的指引,一步步完成从技术方案输出、编码、测试、发布到运营维护的整套流程?使用中有什么避坑点?本文从实际…

【观察】共建“伙伴+华为”背后,是华为平台到体系的战略“升维”

2017年,在当年的“伙伴大会”上,华为首次提出以“平台生态”双轮驱动的战略,以更加开放的心态积极拥抱产业变化,通过和产业链上各个层级的合作伙伴一起合作,共同实现新的市场突破。 彼时中国企业和行业的数字化转型刚刚…

2023智源大会议程公开 | 生成模型论坛

2023年,人工智能新研究、新系统、新产品竞放——我们即将见证另一场有关智能的惊叹演化。6月9日,2023北京智源大会,将邀请这一领域的探索者、实践者、以及关心智能科学的每个人,共同拉开未来舞台的帷幕,你准备好了吗&a…

chatgpt赋能Python-python_geo

Python在地理空间数据分析中的应用 在地理空间信息系统领域,Python已经成为最流行的编程语言之一。Python有许多强大的地理空间库,例如GDAL,Shapely和Fiona等,这使得它成为了地理空间数据分析中不可或缺的一部分。 1. Python的地…

快速上手打通java中的IO流

目录 IO原理 流的分类 节点流和处理流 IO 流体系 InputStream & Reader InputStream Reader OutputStream & Writer OutputStream Writer 节点流(或文件流) 读取文件 写入文件 注意点 缓冲流 转换流 标准输入、输出流 打印流 数据流 对象流 O…

chatgpt赋能Python-python_for_局部变量

Python局部变量详解 Python是一种动态语言,其中一个特点是变量声明和赋值同时进行,因此变量类型在声明时可以不指定,而是在赋值时根据数据类型来推断。Python中的变量分为全局变量和局部变量。在本文中,我们将讨论Python中的局部…

【PCB专题】案例:使用SI9000阻抗计算线宽线距为PCB Layout提供参考

在实际工作中,我们会使用到高速信号(如USB2.0、MIPI、HDMI、以太网等)或射频信号。那么在PCB中这些信号都需要做阻抗匹配,防止信号产生反射而损耗和生成噪声。 阻抗对信号质量的影响很明显,我们可以利用眼图来分析信号质量。 下图所示为TI都是在90欧姆差分阻抗源经过了90欧…

论文改进想法

论文改进想法 当 z p r e v z_{prev} zprev​(上一轮本地训练好的发往server的模型得到的表征)与 z z z(这轮正在被更新的本地模型得到的表征)相似或是差别不大时,我们将 l c o n \mathcal{l}_{con} lcon​定为0&…

Go设计模式--中介者,最后的模式!

大家好,这里是每周都在陪你一起进步的网管~!今天继续学习设计模式,也是我们要学习的最后一个设计模式—中介者模式,对这个模式有一点了解后会觉得它跟我们已经学过的观察者模式挺像,但是两者还是有些区别的…