2024王道数据结构考研笔记专栏将持续更新,欢迎 点此 收藏,共同交流学习…
文章目录
- 第二章:线性表
- 2.1线性表的定义
- 2.2顺序表的定义
- 2.2.1静态分配:
- 2.2.2动态分配
- 2.2顺序表的基本操作
- 1.插入操作 :平均时间复杂度O(n)
- 2.删除操作:平均时间复杂度O(n)
- 3.按位查找(获取L表中第i个位置的值):平均时间复杂度O(1)
- 4.按值查找:平均时间复杂度O(n)
- 2.3线性表的链式表示
- 2.3.1 单链表的定义
- 2.3.2单链表上基本操作的实现
- 2.3.3单链表的查找
- 2.3.4求单链表的长度
- 2.3.5单链表的创建操作
- 2.3.6双链表
- 2.3.7循环链表
- 2.3.8静态链表
- 2.3.9 顺序表和链表的比较
- 2.3.10顺序、链式、静态、动态四种存储方式的比较
- 2.3.11链表的逆置算法
第二章:线性表
2.1线性表的定义
线性表是具有相同数据类型的n(n>0)个数据元素的有限序列,其中n为表长,当n=0时线性表是一个空表。
2.2顺序表的定义
2.2.1静态分配:
//顺序表的实现--静态分配
#include<stdio.h>
#define MaxSize 10 //定义表的最大长度
typedef struct{
int data[MaxSize];//用静态的"数组"存放数据元素
int length; //顺序表的当前长度
}SqList; //顺序表的类型定义(静态分配方式)
void InitList(SqList &L){
for(int i=0;i<MaxSize;i++){
L.data[i]=0; //将所有数据元素设置为默认初始值
}
L.length=0;
}
int main(){
SqList L;//声明一个顺序表
InitList(L);//初始化一个顺序表
for(int i=0;i<MaxSize;i++){
printf("data[%d]=%d\n",i,L.data[i]);
}
return 0;
}
2.2.2动态分配
//顺序表的实现——动态分配
#include<stdio.h>
#include<stdlib.h>//malloc、free函数的头文件
#define InitSize 10 //默认的最大长度
typedef struct{
int *data;//指示动态分配数组的指针
int MaxSize; //顺序表的最大容量
int length; //顺序表的当前长度
}SeqList;
//初始化
void InitList(SeqList &L){
//用malloc 函数申请一片连续的存储空间
L.data =(int*)malloc(InitSize*sizeof(int)) ;
L.length=0;
L.MaxSize=InitSize;
}
//增加动态数组的长度
void IncreaseSize(SeqList &L,int len){
int *p=L.data;
L.data=(int*)malloc((L.MaxSize+len)*sizeof(int));
for(int i=0;i<L.length;i++){
L.data[i]=p[i]; //将数据复制到新区域
}
L.MaxSize=L.MaxSize+len; //顺序表最大长度增加len
free(p); //释放原来的内存空间
}
int main(void){
SeqList L; //声明一个顺序表
InitList(L);//初始化顺序表
IncreaseSize(L,5);
return 0;
}
顺序表的特点:
- 随机访问 ,可以在O(1)时间内找到第i个元素。
- 存储密度高,每个节点只存储数据元素
- 拓展容量不方便
- 插入、删除操作不方便,需要移动大量元素
2.2顺序表的基本操作
1.插入操作 :平均时间复杂度O(n)
bool ListInsert(SqList &L, int i, int e){
//判断i的范围是否有效
if(i<1||i>L.length+1)
return false;
if(L.length>MaxSize) //当前存储空间已满,不能插入
return false;
for(int j=L.length; j>=i; j--){ //将第i个元素及其之后的元素后移
L.data[j]=L.data[j-1];
}
L.data[i-1]=e; //在位置i处放入e
L.length++; //长度加1
return true;
}
2.删除操作:平均时间复杂度O(n)
bool LisDelete(SqList &L, int i, int &e){ // e用引用型参数
//判断i的范围是否有效
if(i<1||i>L.length)
return false;
e = L.data[i-1] //将被删除的元素赋值给e
for(int j=L.length; j>=i; j--){ //将第i个后的元素前移
L.data[j-1]=L.data[j];
}
L.length--; //长度减1
return true;
}
3.按位查找(获取L表中第i个位置的值):平均时间复杂度O(1)
#define MaxSize 10 //定义最大长度
typedef struct{
ElemType data[MaxSize]; //用静态的“数组”存放数据元素
int Length; //顺序表的当前长度
}SqList; //顺序表的类型定义
ElemType GetElem(SqList L, int i){
// ...判断i的值是否合法
return L.data[i-1]; //注意是i-1
}
4.按值查找:平均时间复杂度O(n)
#define InitSize 10 //定义最大长度
typedef struct{
ElemTyp *data; //用静态的“数组”存放数据元素
int Length; //顺序表的当前长度
}SqList;
//在顺序表L中查找第一个元素值等于e的元素,并返回其位序
int LocateElem(SqList L, ElemType e){
for(int i=0; i<L.lengthl i++)
if(L.data[i] == e)
return i+1; //数组下标为i的元素值等于e,返回其位序i+1
return 0; //推出循环,说明查找失败
}
2.3线性表的链式表示
2.3.1 单链表的定义
定义: 线性表的链式存储又称单链表,它是指通过一组任意的存储单元来存储线性表中的数据元素。
typedef struct LNode{//定义单链表结点类型
ElemType data; //数据域
struct LNode *next;//指针域
}LNode, *LinkList;
可以利用typedef关键字——数据类型重命名:type<数据类型><别名>
单链表的两种实现方式:
- 不带头结点的单链表
```bash
typedef struct LNode{
ElemType data;
struct LNode *next;
}LNode, *LinkList;
//初始化一个空的单链表
bool InitList(LinkList &L){ //注意用引用 &
L = NULL; //空表,暂时还没有任何结点;
return true;
}
void test(){
LinkList L; //声明一个指向单链表的指针: 头指针
//初始化一个空表
InitList(L);
//...
}
//判断单链表是否为空
bool Empty(LinkList L){
if (L == NULL)
return true;
else
return false;
}
头结点:代表链表上头指针指向的第一个结点,不带有任何数据。
- 带头结点的单链表
typedef struct LNode{
ElemType data;
struct LNode *next;
}LNode, *LinkList;
//初始化一个单链表(带头结点)
bool InitList(LinkList &L){
L = (LNode*) malloc(sizeof(LNode)); //头指针指向的结点——分配一个头结点(不存储数据)
if (L == NULL) //内存不足,分配失败
return false;
L -> next = NULL; //头结点之后暂时还没有结点
return true;
}
void test(){
LinkList L; //声明一个指向单链表的指针: 头指针
//初始化一个空表
InitList(L);
//...
}
//判断单链表是否为空(带头结点)
bool Empty(LinkList L){
if (L->next == NULL)
return true;
else
return false;
}
带头结点和不带头结点的比较:
不带头结点:写代码麻烦!对第一个数据节点和后续数据节点的处理需要用不同的代码逻辑,对空表和非空表的处理也需要用不同的代码逻辑; 头指针指向的结点用于存放实际数据;
带头结点:头指针指向的头结点不存放实际数据,头结点指向的下一个结点才存放实际数据;
2.3.2单链表上基本操作的实现
1.按位序插入(带头结点):
ListInsert(&L, i, e): 在表L中的第i个位置上插入指定元素e = 找到第i-1个结点(前驱结点),将新结点插入其后;其中头结点可以看作第0个结点,故i=1时也适用。
typedef struct LNode{
ElemType data;
struct LNode *next;
}LNode, *LinkList;
//在第i个位置插入元素e(带头结点)
bool ListInsert(LinkList &L, int i, ElemType e){
//判断i的合法性, i是位序号(从1开始)
if(i<1)
return False;
LNode *p; //指针p指向当前扫描到的结点
int j=0; //当前p指向的是第几个结点
p = L; //L指向头结点,头结点是第0个结点(不存数据)
//循环找到第i-1个结点
while(p!=NULL && j<i-1){ //如果i>lengh, p最后会等于NULL
p = p->next; //p指向下一个结点
j++;
}
if (p==NULL) //i值不合法
return false;
//在第i-1个结点后插入新结点
LNode *s = (LNode *)malloc(sizeof(LNode)); //申请一个结点
s->data = e;
s->next = p->next;
p->next = s; //将结点s连到p后,后两步千万不能颠倒qwq
return true;
}
平均时间复杂度:O(n)
2.按位序插入(不带头结点)
ListInsert(&L, i, e): 在表L中的第i个位置上插入指定元素e = 找到第i-1个结点(前驱结点),将新结点插入其后; 因为不带头结点,所以不存在“第0个”结点,因此!i=1 时,需要特殊处理——插入(删除)第1个元素时,需要更改头指针L;
typedef struct LNode{
ElemType data;
struct LNode *next;
}LNode, *LinkList;
bool ListInsert(LinkList &L, int i, ElemType e){
if(i<1)
return false;
//插入到第1个位置时的操作有所不同!
if(i==1){
LNode *s = (LNode *)malloc(size of(LNode));
s->data =e;
s->next =L;
L=s; //头指针指向新结点
return true;
}
//i>1的情况与带头结点一样!唯一区别是j的初始值为1
LNode *p; //指针p指向当前扫描到的结点
int j=1; //当前p指向的是第几个结点
p = L; //L指向头结点,头结点是第0个结点(不存数据)
//循环找到第i-1个结点
while(p!=NULL && j<i-1){ //如果i>lengh, p最后会等于NULL
p = p->next; //p指向下一个结点
j++;
}
if (p==NULL) //i值不合法
return false;
//在第i-1个结点后插入新结点
LNode *s = (LNode *)malloc(sizeof(LNode)); //申请一个结点
s->data = e;
s->next = p->next;
p->next = s;
return true;
}
3.指定结点的后插操作:
InsertNextNode(LNode *p, ElemType e): 给定一个结点p,在其之后插入元素e; 根据单链表的链接指针只能往后查找,故给定一个结点p,那么p之后的结点我们都可知,但是p结点之前的结点无法得知;
typedef struct LNode{
ElemType data;
struct LNode *next;
}LNode, *LinkList;
bool InsertNextNode(LNode *p, ElemType e){
if(p==NULL){
return false;
}
LNode *s = (LNode *)malloc(sizeof(LNode));
//某些情况下分配失败,比如内存不足
if(s==NULL)
return false;
s->data = e; //用结点s保存数据元素e
s->next = p->next;
p->next = s; //将结点s连到p之后
return true;
} //平均时间复杂度 = O(1)
//有了后插操作,那么在第i个位置上插入指定元素e的代码可以改成:
bool ListInsert(LinkList &L, int i, ElemType e){
if(i<1)
return False;
LNode *p; //指针p指向当前扫描到的结点
int j=0; //当前p指向的是第几个结点
p = L; //L指向头结点,头结点是第0个结点(不存数据)
//循环找到第i-1个结点
while(p!=NULL && j<i-1){ //如果i>lengh, p最后4鸟会等于NULL
p = p->next; //p指向下一个结点
j++;
}
return InsertNextNode(p, e)
}
4.指定结点的前插操作
思想:设待插入结点是s,将s插入到p的前面。我们仍然可以将s插入到*p的后面。然后将p->data与s->data交换,这样既能满足了逻辑关系,又能是的时间复杂度为O(1).(真是妙的不达鸟)
//前插操作:在p结点之前插入元素e
bool InsertPriorNode(LNode *p, ElenType e){
if(p==NULL)
return false;
LNode *s = (LNode *)malloc(sizeof(LNode));
if(s==NULL) //内存分配失败
return false;
//重点来了!
s->next = p->next;
p->next = s; //新结点s连到p之后
s->data = p->data; //将p中元素复制到s
p->data = e; //p中元素覆盖为e
return true;
} //时间复杂度为O(1)
王道书代码:
bool InsertPriorNode(LNode *p, LNode *s){
if(p==NULL || S==NULL)
return false;
s->next = p->next;
p->next = s; ///s连接到p
ELemType temp = p->data; //交换数据域部分
p->data = s->data;
s->data = temp;
return true;
}
5.按位序删除节点(带头结点)
ListDelete(&L, i, &e): 删除操作,删除表L中第i个位置的元素,并用e返回删除元素的值;头结点视为“第0个”结点;
思路:找到第i-1个结点,将其指针指向第i+1个结点,并释放第i个结点;
typedef struct LNode{
ElemType data;
struct LNode *next;
}LNode, *LinkList;
bool ListDelete(LinkList &L, int i, ElenType &e){
if(i<1) return false;
LNode *p; //指针p指向当前扫描到的结点
int j=0; //当前p指向的是第几个结点
p = L; //L指向头结点,头结点是第0个结点(不存数据)
//循环找到第i-1个结点
while(p!=NULL && j<i-1){ //如果i>lengh, p最后会等于NULL
p = p->next; //p指向下一个结点
j++;
}
if(p==NULL)
return false;
if(p->next == NULL) //第i-1个结点之后已无其他结点
return false;
LNode *q = p->next; //令q指向被删除的结点
e = q->data; //用e返回被删除元素的值
p->next = q->next; //将*q结点从链中“断开”
free(q) //释放结点的存储空间
return true;
}
时间复杂度分析:
最坏,平均时间复杂度:O(n)
最好时间复杂度:删除第一个结点 O(1)
6.指定结点的删除
bool DeleteNode(LNode *p){
if(p==NULL)
return false;
LNode *q = p->next; //令q指向*p的后继结点
p->data = p->next->data; //让p和后继结点交换数据域
p->next = q->next; //将*q结点从链中“断开”
free(q);
return true;
} //时间复杂度 = O(1)
2.3.3单链表的查找
按位查找
==GetElem(L, i): ==按位查找操作,获取表L中第i个位置的元素的值;
LNode * GetElem(LinkList L, int i){
if(i<0) return NULL;
LNode *p; //指针p指向当前扫描到的结点
int j=0; //当前p指向的是第几个结点
p = L; //L指向头结点,头结点是第0个结点(不存数据)
while(p!=NULL && j<i){ //循环找到第i个结点
p = p->next;
j++;
}
return p; //返回p指针指向的值
}
平均时间复杂度O(n)
按值查找
LocateElem(L, e):按值查找操作,在表L中查找具有给定关键字值的元素;
LNode * LocateElem(LinkList L, ElemType e){
LNode *P = L->next; //p指向第一个结点
//从第一个结点开始查找数据域为e的结点
while(p!=NULL && p->data != e){
p = p->next;
}
return p; //找到后返回该结点指针,否则返回NULL
}
2.3.4求单链表的长度
== Length(LinkList L)==:计算单链表中数据结点(不含头结点)的个数,需要从第一个结点看是顺序依次访问表中的每个结点。算法的时间复杂度为O(n)。
int Length(LinkList L){
int len=0; //统计表长
LNode *p = L;
while(p->next != NULL){
p = p->next;
len++;
}
return len;
}
2.3.5单链表的创建操作
1.头插法建立单链表(平均时间复杂度O(n))
思路:每次都将生成的结点插入到链表的表头。
LinkList List_HeadInsert(LinkList &L){ //逆向建立单链表
LNode *s;
int x;
L = (LinkList)malloc(sizeof(LNode)); //建立头结点
L->next = NULL; //初始为空链表,这步不能少!
scanf("%d", &x); //输入要插入的结点的值
while(x!=9999){ //输入9999表结束
s = (LNode *)malloc(sizeof(LNode)); //创建新结点
s->data = x;
s->next = L->next;
L->next = s; //将新结点插入表中,L为头指针
scanf("%d", &x);
}
return L;
}
2.尾插法建立单链表(时间复杂度O(n))
思路:每次将新节点插入到当前链表的表尾,所以必须增加一个尾指针r,使其始终指向当前链表的尾结点。好处:生成的链表中结点的次序和输入数据的顺序会一致。
LinkList List_TailInsert(LinkList &L){ //正向建立单链表
int x; //设ElemType为整型int
L = (LinkList)malloc(sizeof(LNode)); //建立头结点(初始化空表)
LNode *s, *r = L; //r为表尾指针
scanf("%d", &x); //输入要插入的结点的值
while(x!=9999){ //输入9999表结束
s = (LNode *)malloc(sizeof(LNode));
s->data = x;
r->next = s;
r = s //r指针指向新的表尾结点
scanf("%d", &x);
}
r->next = NULL; //尾结点指针置空
return L;
}
链表的逆置:
算法思想:逆置链表初始为空,原表中结点从原链表中依次“删除”,再逐个插入逆置链表的表头(即“头插”到逆置链表中),使它成为逆置链表的“新”的第一个结点,如此循环,直至原链表为空;
LNode *Inverse(LNode *L)
{
LNode *p, *q;
p = L->next; //p指针指向第一个结点
L->next = NULL; //头结点指向NULL
while (p != NULL){
q = p;
p = p->next;
q->next = L->next;
L->next = q;
}
return L;
2.3.6双链表
双链表中节点类型的描述:`
typedef struct DNode{ //定义双链表结点类型
ElemType data; //数据域
struct DNode *prior, *next; //前驱和后继指针
}DNode, *DLinklist;
双链表的初始化(带头结点)
typedef struct DNode{ //定义双链表结点类型
ElemType data; //数据域
struct DNode *prior, *next; //前驱和后继指针
}DNode, *DLinklist;
//初始化双链表
bool InitDLinkList(Dlinklist &L){
L = (DNode *)malloc(sizeof(DNode)); //分配一个头结点
if(L==NULL) //内存不足,分配失败
return false;
L->prior = NULL; //头结点的prior指针永远指向NULL
L->next = NULL; //头结点之后暂时还没有结点
return true;
}
void testDLinkList(){
//初始化双链表
DLinklist L; // 定义指向头结点的指针L
InitDLinkList(L); //申请一片空间用于存放头结点,指针L指向这个头结点
//...
}
//判断双链表是否为空
bool Empty(DLinklist L){
if(L->next == NULL) //判断头结点的next指针是否为空
return true;
else
return false;
}
双链表的插入操作
后插操作
InsertNextDNode(p, s): 在p结点后插入s结点
bool InsertNextDNode(DNode *p, DNode *s){ //将结点 *s 插入到结点 *p之后
if(p==NULL || s==NULL) //非法参数
return false;
s->next = p->next;
if (p->next != NULL) //p不是最后一个结点=p有后继结点
p->next->prior = s;
s->prior = p;
p->next = s;
return true;
}
按位序插入操作:
思路:从头结点开始,找到某个位序的前驱结点,对该前驱结点执行后插操作;
前插操作:
思路:找到给定结点的前驱结点,再对该前驱结点执行后插操作;
双链表的删除操作
删除p节点的后继节点
//删除p结点的后继结点
bool DeletNextDNode(DNode *p){
if(p==NULL) return false;
DNode *q =p->next; //找到p的后继结点q
if(q==NULL) return false; //p没有后继结点;
p->next = q->next;
if(q->next != NULL) //q结点不是最后一个结点
q->next->prior=p;
free(q);
return true;
}
//销毁一个双链表
bool DestoryList(DLinklist &L){
//循环释放各个数据结点
while(L->next != NULL){
DeletNextDNode(L); //删除头结点的后继结点
free(L); //释放头结点
L=NULL; //头指针指向NULL
}
}
双链表的遍历操作
前向遍历
while(p!=NULL){
//对结点p做相应处理,eg打印
p = p->prior;
}
后向遍历
while(p!=NULL){
//对结点p做相应处理,eg打印
p = p->next;
}
注意:双链表不可随机存取,按位查找和按值查找操作都只能用遍历的方式实现,时间复杂度为O(n)
2.3.7循环链表
1.循环单链表
最后一个结点的指针不是NULL,而是指向头结点
typedef struct LNode{
ElemType data;
struct LNode *next;
}DNode, *Linklist;
/初始化一个循环单链表
bool InitList(LinkList &L){
L = (LNode *)malloc(sizeof(LNode)); //分配一个头结点
if(L==NULL) //内存不足,分配失败
return false;
L->next = L; //头结点next指针指向头结点
return true;
}
//判断循环单链表是否为空(终止条件为p或p->next是否等于头指针)
bool Empty(LinkList L){
if(L->next == L)
return true; //为空
else
return false;
}
//判断结点p是否为循环单链表的表尾结点
bool isTail(LinkList L, LNode *p){
if(p->next == L)
return true;
else
return false;
}
单链表和循环单链表的比较:
单链表:从一个结点出发只能找到该结点后续的各个结点;对链表的操作大多都在头部或者尾部;设立头指针,从头结点找到尾部的时间复杂度=O(n),即对表尾进行操作需要O(n)的时间复杂度;
循环单链表:从一个结点出发,可以找到其他任何一个结点;设立尾指针,从尾部找到头部的时间复杂度为O(1),即对表头和表尾进行操作都只需要O(1)的时间复杂度;
优点:从表中任一节点出发均可找到表中其他结点。
2.循环双链表
表头结点的prior指向表尾结点,表尾结点的next指向头结点
typedef struct DNode{
ElemType data;
struct DNode *prior, *next;
}DNode, *DLinklist;
//初始化空的循环双链表
bool InitDLinkList(DLinklist &L){
L = (DNode *) malloc(sizeof(DNode)); //分配一个头结点
if(L==NULL) //内存不足,分配失败
return false;
L->prior = L; //头结点的prior指向头结点
L->next = L; //头结点的next指向头结点
}
void testDLinkList(){
//初始化循环单链表
DLinklist L;
InitDLinkList(L);
//...
}
//判断循环双链表是否为空
bool Empty(DLinklist L){
if(L->next == L)
return true;
else
return false;
}
//判断结点p是否为循环双链表的表尾结点
bool isTail(DLinklist L, DNode *p){
if(p->next == L)
return true;
else
return false;
}
双链表的插入(循环双链表):
bool InsertNextDNode(DNode *p, DNode *s){
s->next = p->next;
p->next->prior = s;
s->prior = p;
p->next = s;
双链表的删除
//删除p的后继结点q
p->next = q->next;
q->next->prior = p;
free(q);
双向循环链表:
和单链的循环表类似,双向链表也可以有循环表,让头结点的前驱指针指向链表的最后一个结点,让最后一个结点的后继指针指向头结点。
结构定义:
typedef struct DuLNode{
Elemtype data;
struct DulNode *prior,*next;
} DuLNode,*DuLinkList;
2.3.8静态链表
1. 定义:
-
单链表:各个结点散落在内存中的各个角落,每个结点有指向下一个节点的指针(下一个结点在内存中的地址);
-
静态链表:用数组的方式来描述线性表的链式存储结构: 分配一整片连续的内存空间,各个结点集中安置,包括了——数据元素and下一个结点的数组下标(游标)
- 其中数组下标为0的结点充当"头结点"
- 游标为-1表示已经到达表尾
- 若每个数据元素为4B,每个游标为4B,则每个结点共8B;假设起始地址为addr,则数据下标为2的存放地址为:addr+8*2
- 注意: 数组下标——物理顺序,位序——逻辑顺序;
- 优点:增、删操作不需要大量移动元素;
- 缺点:不能随机存取,只能从头结点开始依次往后查找,容量固定不变!
2.静态链表用代码表示:
#define MaxSize 10 //静态链表的最大长度
struct Node{ //静态链表结构类型的定义
ElemType data; //存储数据元素
int next; //下一个元素的数组下标(游标)
};
//用数组定义多个连续存放的结点
void testSLinkList(){
struct Node a[MaxSize]; //数组a作为静态链表, 每一个数组元素的类型都是struct Node
//...
}
也可以这样:
#define MaxSize 10 //静态链表的最大长度
typedef struct{ //静态链表结构类型的定义
ELemType data; //存储数据元素
int next; //下一个元素的数组下标
}SLinkList[MaxSize];
void testSLinkList(){
SLinkList a;
}
也等同于:
#define MaxSize 10 //静态链表的最大长度
struct Node{ //静态链表结构类型的定义
ElemType data; //存储数据元素
int next; //下一个元素的数组下标(游标)
};
typedef struct Node SLinkList[MaxSize]; //重命名struct Node,用SLinkList定义“一个长度为MaxSize的Node型数组;
注意:SLinkList a 强调a是静态链表;struct Node a 强调a是一个Node型数组;
3.静态链表基本操作的实现
-
初始化静态链表:把a[0]的next设为-1
-
查找某个位序(不是数组下标,位序是各个结点在逻辑上的顺序)的结点:从头结点出发挨个往后遍历结点,时间复杂度O=(n)
-
在位序为i上插入结点:① 找到一个空的结点,存入数据元素;② 从头结点出发找到位序为i-1的结点;③修改新结点的next;④ 修改i-1号结点的next;
-
删除某个结点:① 从头结点出发找到前驱结点;② 修改前驱节点的游标;③ 被删除节点next设为-2;
2.3.9 顺序表和链表的比较
1.逻辑结构
- 顺序表和链表都属于线性表,都是线性结构
2.存储结构
-
顺序表:顺序存储
- 优点:支持随机存取,存储密度高
- 缺点:大片连续空间分配不方便,改变容量不方便
-
链表:链式存储
- 优点:离散的小空间分配方便,改变容量方便
- 缺点:不可随机存取,存储密度低
3. 基本操作 - 创建
-
顺序表:需要预分配大片连续空间。若分配空间过小,则之后不方便拓展容量;若分配空间过大,则浪费内存资源;
-
静态分配:静态数组,容量不可改变
-
动态分配:动态数组,容量可以改变,但是需要移动大量元素,时间代价高(malloc(),free())
-
链表:只需要分配一个头结点或者只声明一个头指针
4. 基本操作 - 销毁
-
顺序表:修改 Length = 0
- 静态数组——系统自动回收空间
typedef struct{
ElemType *data;
int MaxSize;
int length;
}SeqList;
- 动态分配:动态数组——需要手动free()
//创
L.data = (ELemType *)malloc(sizeof(ElemType) *InitSize)
//销
free(L.data);
//!malloc() 和 free() 必须成对出现
5.基本操作-增/删
-
顺序表:插入/删除元素要将后续元素后移/前移;时间复杂度=O(n),时间开销主要来自于移动元素;
-
链表:插入/删除元素只需要修改指针;时间复杂度=O(n),时间开销主要来自查找目标元素
6.基本操作-查
-
顺序表
- 按位查找:O(1)
-
按值查找:O(n),若表内元素有序,可在O(log2n)时间内找到
-
链表
- 按位查找:O(n)
- 按值查找:O(n)
2.3.10顺序、链式、静态、动态四种存储方式的比较
- 顺序存储的固有特点:
逻辑顺序与物理顺序一直,本质上是用数组存储线性表的各个元素(即随机存取);存储密度大,存储空间利用率高。 - 链式存储的固有特点:
元素之间的关系采用这些元素所在的节点的“指针”信息表示(插、删不需要移动节点)。 - 静态存储的固有特点:
在程序运行的过程中不要考虑追加内存的分配问题。 - 动态存储的固有特点:
可动态分配内存;有效的利用内存资源,使程序具有可扩展性。
2.3.11链表的逆置算法
思路:先将链表一个一个的断开,再将断开的链表插入到原来的队列中