谈谈Netty线程模型

news2025/1/13 15:55:57

大家好,我是易安!

Netty是一个高性能网络应用框架,应用非常普遍,目前在Java领域里,Netty基本上成为网络程序的标配了。Netty框架功能丰富,也非常复杂,今天我们主要分析Netty框架中的线程模型,而 线程模型直接影响着网络程序的性能

网络编程性能的瓶颈

BIO模型里,所有read()操作和write()操作都会阻塞当前线程的,如果客户端已经和服务端建立了一个连接,而迟迟不发送数据,那么服务端的read()操作会一直阻塞,所以 使用BIO模型,一般都会为每个socket分配一个独立的线程,这样就不会因为线程阻塞在一个socket上而影响对其他socket的读写。BIO的线程模型如下图所示,每一个socket都对应一个独立的线程;为了避免频繁创建、消耗线程,可以采用线程池,但是socket和线程之间的对应关系并不会变化。

alt

BIO的线程模型

BIO这种线程模型适用于socket连接不是很多的场景;但是现在的互联网场景,往往需要服务器能够支撑十万甚至百万连接,而创建十万甚至上百万个线程显然并不现实,所以BIO线程模型无法解决百万连接的问题。如果仔细观察,你会发现互联网场景中,虽然连接多,但是每个连接上的请求并不频繁,所以线程大部分时间都在等待I/O就绪。也就是说线程大部分时间都阻塞在那里,这完全是浪费,如果我们能够解决这个问题,那就不需要这么多线程了。

顺着这个思路,我们可以将线程模型优化为下图这个样子,可以用一个线程来处理多个连接,这样线程的利用率就上来了,同时所需的线程数量也跟着降下来了。这个思路很好,可是使用BIO相关的API是无法实现的,这是为什么呢?因为BIO相关的socket读写操作都是阻塞式的,而一旦调用了阻塞式API,在I/O就绪前,调用线程会一直阻塞,也就无法处理其他的socket连接了。

alt

理想的线程模型图

好在Java里还提供了非阻塞式(NIO)API, 利用非阻塞式API就能够实现一个线程处理多个连接了。那具体如何实现呢?现在普遍都是 采用Reactor模式,包括Netty的实现。所以,要想理解Netty的实现,接下来我们就需要先了解一下Reactor模式。

Reactor模式

下面是Reactor模式的类结构图,其中Handle指的是I/O句柄,在Java网络编程里,它本质上就是一个网络连接。Event Handler很容易理解,就是一个事件处理器,其中handle_event()方法处理I/O事件,也就是每个Event Handler处理一个I/O Handle;get_handle()方法可以返回这个I/O的Handle。Synchronous Event Demultiplexer可以理解为操作系统提供的I/O多路复用API,例如POSIX标准里的select()以及Linux里面的epoll()。

alt

Reactor模式类结构图

Reactor模式的核心自然是 Reactor这个类,其中register_handler()和remove_handler()这两个方法可以注册和删除一个事件处理器; handle_events()方式是核心,也是Reactor模式的发动机,这个方法的核心逻辑如下:首先通过同步事件多路选择器提供的select()方法监听网络事件,当有网络事件就绪后,就遍历事件处理器来处理该网络事件。由于网络事件是源源不断的,所以在主程序中启动Reactor模式,需要以 while(true){} 的方式调用handle_events()方法。

void Reactor::handle_events(){
  //通过同步事件多路选择器提供的
  //select()方法监听网络事件
  select(handlers);
  //处理网络事件
  for(h in handlers){
    h.handle_event();
  }
}
// 在主程序中启动事件循环
while (true) {
  handle_events();
 }

Netty的线程模型

Netty的实现虽然参考了Reactor模式,但是并没有完全照搬, Netty中最核心的概念是事件循环(EventLoop),其实也就是Reactor模式中的Reactor, 负责监听网络事件并调用事件处理器进行处理。在4.x版本的Netty中,网络连接和EventLoop是稳定的多对1关系,而EventLoop和Java线程是1对1关系,这里的稳定指的是关系一旦确定就不再发生变化。也就是说一个网络连接只会对应唯一的一个EventLoop,而一个EventLoop也只会对应到一个Java线程,所以 一个网络连接只会对应到一个Java线程

一个网络连接对应到一个Java线程上,有什么好处呢?最大的好处就是对于一个网络连接的事件处理是单线程的,这样就 避免了各种并发问题

Netty中的线程模型可以参考下图,核心目标是用一个线程处理多个网络连接。

alt

Netty中的线程模型

Netty中还有一个核心概念是 EventLoopGroup,顾名思义,一个EventLoopGroup由一组EventLoop组成。实际使用中,一般都会创建两个EventLoopGroup,一个称为bossGroup,一个称为workerGroup。为什么会有两个EventLoopGroup呢?

这个和socket处理网络请求的机制有关,socket处理TCP网络连接请求,是在一个独立的socket中,每当有一个TCP连接成功建立,都会创建一个新的socket,之后对TCP连接的读写都是由新创建处理的socket完成的。也就是说 处理TCP连接请求和读写请求是通过两个不同的socket完成的。上面我们在讨论网络请求的时候,为了简化模型,只是讨论了读写请求,而没有讨论连接请求。

在Netty中,bossGroup就用来处理连接请求的,而workerGroup是用来处理读写请求的。bossGroup处理完连接请求后,会将这个连接提交给workerGroup来处理, workerGroup里面有多个EventLoop,那新的连接会交给哪个EventLoop来处理呢?这就需要一个负载均衡算法,Netty中目前使用的是 轮询算法

下面我们用Netty重新实现以下echo程序的服务端,近距离感受一下Netty。

用Netty实现Echo程序服务端

下面的示例代码基于Netty实现了echo程序服务端:首先创建了一个事件处理器(等同于Reactor模式中的事件处理器),然后创建了bossGroup和workerGroup,再之后创建并初始化了ServerBootstrap,代码还是很简单的,不过有两个地方需要注意一下。

第一个,如果NettybossGroup只监听一个端口,那bossGroup只需要1个EventLoop就可以了,多了纯属浪费。

第二个,默认情况下,Netty会创建“2*CPU核数”个EventLoop,由于网络连接与EventLoop有稳定的关系,所以事件处理器在处理网络事件的时候是不能有阻塞操作的,否则很容易导致请求大面积超时。如果实在无法避免使用阻塞操作,那可以通过线程池来异步处理。

//事件处理器
final EchoServerHandler serverHandler
  = new EchoServerHandler();
//boss线程组
EventLoopGroup bossGroup
  = new NioEventLoopGroup(1);
//worker线程组
EventLoopGroup workerGroup
  = new NioEventLoopGroup();
try {
  ServerBootstrap b = new ServerBootstrap();
  b.group(bossGroup, workerGroup)
   .channel(NioServerSocketChannel.class)
   .childHandler(new ChannelInitializer<SocketChannel>() {
     @Override
     public void initChannel(SocketChannel ch){
       ch.pipeline().addLast(serverHandler);
     }
    });
  //bind服务端端口
  ChannelFuture f = b.bind(9090).sync();
  f.channel().closeFuture().sync();
} finally {
  //终止工作线程组
  workerGroup.shutdownGracefully();
  //终止boss线程组
  bossGroup.shutdownGracefully();
}

//socket连接处理器
class EchoServerHandler extends
    ChannelInboundHandlerAdapter {
  //处理读事件
  @Override
  public void channelRead(
    ChannelHandlerContext ctx, Object msg){
      ctx.write(msg);
  }
  //处理读完成事件
  @Override
  public void channelReadComplete(
    ChannelHandlerContext ctx){
      ctx.flush();
  }
  //处理异常事件
  @Override
  public void exceptionCaught(
    ChannelHandlerContext ctx,  Throwable cause) {
      cause.printStackTrace();
      ctx.close();
  }
}

总结

Netty是一个款优秀的网络编程框架,性能非常好,为了实现高性能的目标,Netty做了很多优化,例如优化了ByteBuffer、支持零拷贝等等,和并发编程相关的就是它的线程模型了。Netty的线程模型设计得很精巧,每个网络连接都关联到了一个线程上,这样做的好处是:对于一个网络连接,读写操作都是单线程执行的,从而避免了并发程序的各种问题。

本文由 mdnice 多平台发布

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/541033.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【数据分享】2014-2023年全国监测站点的逐年空气质量数据(15个指标\shp\excel格式)

空气质量的好坏反映了空气的污染程度&#xff0c;在各项涉及城市环境的研究中&#xff0c;空气质量都是一个十分重要的指标。空气质量是依据空气中污染物浓度的高低来判断的。 我们发现学者王晓磊在自己的主页里面分享了2014年5月以来的全国范围的到站点的逐时空气质量数据&am…

网络安全--红队资源大合集

红队攻击的生命周期&#xff0c;整个生命周期包括&#xff1a; 信息收集、攻击尝试获得权限、持久性控制、权限提升、网络信息收集、横向移动、数据分析&#xff08;在这个基础上再做持久化控制&#xff09;、在所有攻击结束之后清理并退出战场。 重点提醒&#xff1a;本项目…

JVM内存区域(一)

运行时数据区域 ** 线程私有的&#xff1a; 程序计数器虚拟机栈本地方法栈线程共享的&#xff1a; 线程共享的&#xff1a; 堆方法区直接内存 (非运行时数据区的一部分) 程序计数器 程序计数器是一块较小的内存空间&#xff0c;可以看作是当前线程所执行的字节码的行号指示…

15-02 身份安全

身份安全——认证 目录管理系统 身份认证 你知道什么&#xff1a;密码、PIN、密码短语你拥有什么&#xff1a;硬令牌、智能卡、USB卡、手机APP指纹、声纹、脸纹、虹膜 授权和访问控制 访问控制 访问控制原则 最小特权&#xff1a;安全管理员禁止访问任何资源默认拒绝&…

【005】C++数据类型之实型(浮点数)、有符号数以及无符号数

C数据类型之实型、有符号数以及无符号数 引言一、实型&#xff08;浮点数&#xff09;1.1、实型常量1.2、实型变量 二、有符号数三、无符号数总结 引言 &#x1f4a1; 作者简介&#xff1a;专注于C/C高性能程序设计和开发&#xff0c;理论与代码实践结合&#xff0c;让世界没有…

Eolink 出席 QECon 深圳站,共同探讨软件质量和效能发展

5月12日至13日&#xff0c;由 QECon 组委会和深圳市软件行业协会联合主办的「QECon全球软件质量&效能大会」成功召开&#xff0c;作为国内 API 全生命周期解决方案的领军者&#xff0c;Eolink 受邀参加此次大会。 大会中&#xff0c;Eolink SaaS 产品负责人崔嘉杰、高级售…

《思考致富》不应该指望不经历“暂时的失败”便能发财

目录 作者简介 经典摘录 机遇有个狡猾的习惯&#xff0c;喜欢从后门悄悄溜进来&#xff0c;往往还喜欢以灾难或暂时失败的方式乔装露面 离金矿仅有三英尺远 欲望&#xff1a;成就一切的起点&#xff08;通往致富之路的第一步&#xff09; 信念&#xff1a;在脑海里目睹并坚…

网络安全萌新先学什么?后学什么?

在选择网络安全行业之前&#xff0c;我们要弄清楚&#xff0c;要问一下自己的内心&#xff0c;自己为什么要进入这个行业&#xff1f;每个人的答案肯定是不一样的。 肯定有人会说&#xff1a;这个行业比很多其他行业更赚钱 有人会说&#xff1a;对网络安全技术非常感兴趣 有人会…

Web3和低代码开发:下一代Web应用开发的合作与创新

Web3作为区块链技术的一部分&#xff0c;被认为是下一代互联网技术的主要方向。与此同时&#xff0c;低代码开发作为快捷而高效的软件创建工具&#xff0c;也一直得到广泛关注。那么&#xff0c;Web3和低代码开发如何合作&#xff0c;激发出下一代Web应用开发的新生力量呢&…

前端性能优化:如何提高页面加载速度和用户体验

第一章&#xff1a;介绍 当今互联网时代&#xff0c;网站的性能对于用户体验至关重要。一个快速加载的网页不仅能提高用户的满意度&#xff0c;还能增加页面的转化率。而在前端开发中&#xff0c;性能优化是一个永恒的话题。本篇博客将为大家分享一些关于前端性能优化的技巧和…

红色元宇宙数字展厅:三维构建身临其境的红色历史之旅

导语&#xff1a;红色&#xff0c;是中国革命的象征&#xff0c;是我们历史中最为壮丽的篇章之一。然而&#xff0c;随着时间的推移&#xff0c;许多珍贵的红色记忆逐渐模糊&#xff0c;年轻一代对于红色历史的认知也渐行渐远。 红色元宇宙数字展厅&#xff0c;作为一种全新的互…

2023年软件测试前景?自动化测试的未来?我的测试之路高歌猛进...

目录&#xff1a;导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结&#xff08;尾部小惊喜&#xff09; 前言 Python自动化测试&…

网络计算模式复习(五)

结构化P2P&#xff1a;直接根据查询内容的关键字定位其索引的存放节点 DHT算法 将内容索引抽象为<K,V>对 K是内容关键字的Hash摘要&#xff1a;KHash(key) V是存放内容的实际位置&#xff0c;例如节点IP地址等所有的<K,V>对组成一张大的Hash表&#xff0c;该表存…

异地远程连接威联通NAS,无需公网IP

文章目录 前言1. 威联通安装cpolar内网穿透2. 内网穿透2.1 创建隧道2.2 测试公网远程访问 3. 配置固定二级子域名3.1 保留二级子域名3.2 配置二级子域名 4. 使用固定二级子域名远程访问 转载自远程内网穿透的文章&#xff1a;无需公网IP&#xff0c;在外远程访问NAS威联通QNAP【…

当程序员这么多年,为什么我还只会复制粘贴?

如果问程序员&#xff1a;最熟练的快捷键是哪两个&#xff1f; 程序员&#xff08;脱口而出&#xff09;&#xff1a;ctrlc 和 ctrlv &#xff01;即复制和粘贴。 对于为数不少的程序员来说&#xff1a;天下代码不过一个“抄”字&#xff0c;复制和粘贴就是他们创造伟大产品的…

内网渗透—代理Socks协议、路由不出网、后渗透通讯、CS-MSF控制上线

内网渗透—代理Socks协议、路由不出网、后渗透通讯、CS-MSF控制上线 1. 前言1.1. 实验背景1.2. 环境准备1.2.1. 环境介绍1.2.2. 环境测试1.2.2.1. 攻击机测试1.2.2.2. Windows20081.2.2.3. Windows20031.2.2.4. Windows20121.2.2.5. Windows7 1.3. 技术介绍1.3.1. 隧道技术1.3.…

六轴传感器基础知识学习:MPU6050特性,四元数,姿态解算,卡尔曼滤波

实际上&#xff0c;只要说到多少轴的传感器一般是就是指加速度传感器&#xff08;即加速计&#xff09;、角速度传感器&#xff08;即陀螺仪&#xff09;、磁感应传感器&#xff08;即电子罗盘&#xff09;。这三类传感器测量的数据在空间坐标系中都可以被分解为X,Y,Z三个方向轴…

第一章 线性模型

目录 一、线性模型基本概念二、梯度下降三、反向传播四、使用 Pytorch 实现线性模型 一、线性模型基本概念 线性模型&#xff1a; y ^ x ∗ ω b \hat{y} x * \omega b y^​x∗ωb 简化版本&#xff0c;将 b b b 加入到权重矩阵 ω \omega ω 中&#xff1a; y ^ x ∗…

新榜 | “淄博”现象专项观察报告

在过去的一个月中&#xff0c;淄博烧烤的相关话题霸屏网络&#xff0c;这些媒介话题里承载了多少受众的向往与想象&#xff1f; 根据2022年淄博市文旅局公开年报&#xff0c;去年&#xff0c;淄博官方就着力融媒体&#xff0c;在抖音、快手等平台创新使用“淄博到底有多牛”主题…

javascript-核心知识总结

目录 &#xff08;一&#xff09;DOM基础 1、DOM对象 2、节点类型 3、获取元素 4、创造元素 5、插入元素 6、删除元素 7、复制元素 8、替换元素 &#xff08;二&#xff09;DOM进阶 1、用DOM对象对HTML属性操作 2、用DOM对象对CSS操作 3、DOM查找&#xff08;遍历&…