[cryptoverse CTF 2023] crypto部分

news2025/1/10 2:45:58

没打,完事作作题.

Warmup 1

Decode the following ciphertext: GmvfHt8Kvq16282R6ej3o4A9Pp6MsN.

Remember: CyberChef is your friend. Another great cipher decoding tool is Ciphey.

热身一下就凉,问了别人,用ciphey说是能自动解,但是安装报错

rot13+base58 这个没有自动的怎么猜

Warmup 2 

This cipher is invented by French cryptographer Felix Delastelle at the end of the 19th century.

Ciphertext: SCCGDSNFTXCOJPETGMDNG Hint: CTFISGODABEHJKLMNPQRUVWXY

搜了一下是四方密码,但怎么也解不对,后来看WP,中文的网上对这个人讲得不太细,在那一段时间他作了双密码,三密码,四方密码,这个是双密码,把密码对应行列排5个一段上下对应再排

SCCGDSNFTXCOJPETGMDNG
key1: CTFISGODABEHJKLMNPQRUVWXY
  12345
1 CTFIS
2 GODAB
3 EHJKL
4 MNPQR
5 UVWXY

密文编码,5个一组排两行
511111212315421312541122334331122141234221

51111  15421 11223 12214 2
12123  31254 34331 12342 1
上下对应还原
cvctf  funbi fidde codin g
cvctf{funbifiddecoding}

Warmup 3

外国比赛都整上中文了

女川弓彳己廾川 马己 马大川 口川彳己广巛 川巛飞马飞己广 己辶 彳巾山彐马己宀川巾口川 彳马辶. 弓艹口马 山川艹巾, 马川艹廾 廾艹彐弓川 屮艹彳己广 辶巾己廾 彳艹广艹巛艹 女己广 马大川 彳己廾彐川马飞马飞己广 屮山 口己弓宀飞广寸 艹弓弓 彳大艹弓弓川广寸川口. 飞辶 山己门 门广巛川巾口马己己巛 马大川 艹屮己宀川 彳大飞广川口川, 大川巾川 飞口 马大川 辶弓艹寸: 彳宀彳马辶{飞广口川彳门巾川彳大广彳飞彐大川巾}. 口门屮廾飞马 马大川 辶弓艹寸 飞广 弓己女川巾 彳艹口川.

先转成ABCD,再到quipquip上查词频

ABCDEFB GE GHB IBDEJK BKLGLEJ EM DNOPGERBNIB DGM. CSIG OBSN, GBSF FSPCB TSDEJ MNEF DSJSKS AEJ GHB DEFPBGLGLEJ TO IECRLJU SCC DHSCCBJUBI. LM OEV VJKBNIGEEK GHB STERB DHLJBIB, HBNB LI GHB MCSU: DRDGM{LJIBDVNBDHJDLPHBN}. IVTFLG GHB MCSU LJ CEABN DSIB

WELCOME TO THE SECOND EDITION OF CRYPTOVERSE CTF. LAST YEAR, TEAM MAPLE BACON FROM CANADA WON THE COMPETITION BY SOLVING ALL CHALLENGES. IF YOU UNDERSTOOD THE ABOVE CHINESE, HERE IS THE FLAG: CVCTF{INSECURECHNCIPHER}. SUBMIT THE FLAG IN LOWER CASE

cvctf{insecurechncipher}

 

Baby AES

可以爆破的AES加密,密钥只有两字节未知,感觉比热身简单多了

from Crypto.Cipher import AES
from Crypto.Util.Padding import pad
from secret import flag

KEY_LEN = 2
BS = 16
key = pad(open("/dev/urandom","rb").read(KEY_LEN), BS)
iv =  open("/dev/urandom","rb").read(BS)

cipher = AES.new(key, AES.MODE_CBC, iv)
ct = cipher.encrypt(pad(flag, 16))

print(f"iv = {iv.hex()}")
print(f"ct = {ct.hex()}")

# Output:
# iv = 1df49bc50bc2432bd336b4609f2104f7
# ct = a40c6502436e3a21dd63c1553e4816967a75dfc0c7b90328f00af93f0094ed62
iv = bytes.fromhex('1df49bc50bc2432bd336b4609f2104f7')
ct = bytes.fromhex('a40c6502436e3a21dd63c1553e4816967a75dfc0c7b90328f00af93f0094ed62')
for i in range(256):
    for j in range(256):
        key = pad(bytes([i,j]), BS)
        cipher = AES.new(key, AES.MODE_CBC, iv)
        flag = cipher.decrypt(ct)
        if not any([1 for v in flag if v>0x80]):
            print(flag)

#cvctf{b4by_AES_s1mpL3} 

LFSR Explorer

非常小的LFSR,但是也不能直接爆破,加密分两段,前边一个后边一个,可以用矩阵快速幂

from Crypto.Util.number import *
from secret import flag

assert flag.startswith("cvctf{")
assert flag.endswith("}")

flag = flag[6:-1].encode()
assert len(flag) == 8

def explore(state, mask):
    curr = (state << 1) & 0xffffffff
    i = state & mask & 0xffffffff
    last = 0
    while i != 0:
        last ^= (i & 1)
        i >>= 1
    curr ^= last
    return (curr, last)

states = [bytes_to_long(flag[4:]), bytes_to_long(flag[:4])]
mask = 0b10000100010010001000100000010101

output = []
for i in range(8):
    tmp = 0
    for j in range(8):
        (states[i // 4], out) = explore(states[i // 4], mask)
        tmp = (tmp << 1) ^ out
    output.append(tmp)

with open("output.txt", "wb") as f:
    f.write(bytes(output))

构造LFSR矩阵

\begin{bmatrix} & & ... & & m \\ 1 & & ... & & a\\ & 1 & ... & & s\\ & & ... & & \\ & & & 1 & k \end{bmatrix}

mask = 0b10000100010010001000100000010101

#前4字节用states[1]后4用states[0]
c = open('output.txt','rb').read()
print(c.hex())
c = bytes.fromhex('d5e4b7c792248e32')
c1 = c[:4]
c2 = c[4:]


M = matrix(GF(2),32)
for i in range(1,32):
    M[i,i-1]= 1

mask = '10000100010010001000100000010101'
for i in range(32):
    M[i,-1] = int(mask[i])

A = M^32 
c1 = bytes_to_long(c1)
c1 = bin(c1)[2:].zfill(32)
c1 = [int(v) for v in c1]
c1 = vector(GF(2),c1)
x = A.solve_left(c1)
t = ''.join([str(i) for i in x])
long_to_bytes(int(t,2))
#_job
c1 = bytes_to_long(c2)
c1 = bin(c1)[2:].zfill(32)
c1 = [int(v) for v in c1]
c1 = vector(GF(2),c1)
x = A.solve_left(c1)
t = ''.join([str(i) for i in x])
long_to_bytes(int(t,2))
#G@@d
#cvctf{G@@d_job}

Knapsack vs. Backpack

背包问题和背包加密,

前边是10次背包问题,按W作体积P作价值,在不超容易的情况下求最大就能满足大于未值(最大值一定不小于随机值)

后边是个背包加密,用到格基规约,但可能没弄好,会卡壳,幸运的时候一次过.不幸运需要几次.

from Crypto.Util.number import *
from math import gcd
from secret import flag
import random

NBITS = 32

print("=== Knapsack vs. Backpack ===")

class Knapsack:
    def __init__(self, nbits):
        W, P = [], []
        for _ in range(nbits):
            W.append(random.randint(1, 10))
            P.append(random.randint(1, 100))
        
        self.W, self.P = W, P

    def fill(self, nbits):
        r = getRandomNBitInteger(nbits)
        pt = [int(i) for i in bin(r)[2:].zfill(nbits)]
        self.A = sum([x * y for x, y in zip(pt, self.W)])
        self.B = sum([x * y for x, y in zip(pt, self.P)])

try:
    for _ in range(10):
        challenge1 = Knapsack(NBITS*4)
        challenge1.fill(NBITS*4)
        print(challenge1.W)
        print(challenge1.P)
        print(f"Knapsack Capacity: {challenge1.A}")

        inp = list(map(int, input("Items: ").strip().split()))
        for i in inp:
            if i < 0 or i >= len(challenge1.W):
                print("Nope.")
                exit(1)
        if len(inp) != len(set(inp)):
            print("Nope.")
            exit(1)
        weight = sum([challenge1.W[i] for i in inp])
        profit = sum([challenge1.P[i] for i in inp])
        if weight <= challenge1.A and profit >= challenge1.B:
            print("Correct!")
        else:
            print("Nope.")
            exit(1)
except:
    exit(1)

print(flag[:len(flag)//2])

class Backpack:
    def __init__(self, nbits):
        r = [42]
        for _ in range(nbits - 1):
            r.append(random.randint(2*r[-1], 4*r[-1]))
        
        B = random.randint(3*r[-1] + 1, 4*r[-1])
        A = random.randint(2*r[-1] + 1, B - 1)
        while gcd(A, B) != 1:
            A = random.randint(2*r[-1] + 1, B - 1)

        self.M = [A * _ % B for _ in r]

    def fill(self, inp):
        return sum([x * y for x, y in zip(inp, self.M)])

try:
    for _ in range(10):
        challenge2 = Backpack(NBITS)
        r = getRandomNBitInteger(NBITS)
        pt = [int(i) for i in bin(r)[2:].zfill(NBITS)]
        ct = challenge2.fill(pt)
        print(challenge2.M)
        print(f"In your Knapsack: {ct}")

        inp = int(input("Secret: ").strip())
        if inp == r:
            print("Correct!")
        else:
            print("Nope.")
            exit(1)
except:
    exit(1)

print(flag[len(flag)//2:])

Fractional Flag

分解问题,刚好前几天比赛有一题用到NovelSystem加密,phi是(p^2+p+1)*(q^2+q+1)在d小于N^0.5给出e的情况下分解n

这个题给了2,3,6三种情况,但仅3的情况有模板.就拿3的情况来解.

from Crypto.Util.number import getPrime, inverse, bytes_to_long
from secret import flag

assert len(flag) == 99
assert flag.startswith(b"cvctf{") and flag.endswith(b"}")

class MyRSA:
    def __init__(self, n = 2, nbits = 512):
        self.p = getPrime(nbits)
        self.q = getPrime(nbits)
        self.N = self.p * self.q
        self.d = getPrime(nbits//2 - 1)
        self.my_phi = self.gen_phi(n)
        self.e = inverse(self.d, self.my_phi)

    def gen_phi(self, n):
        return sum([self.p**i for i in range(n)]) * sum([self.q**i for i in range(n)])

    def encrypt(self, m):
        print("I am not going to encrypt anything...")
        return m

    def get_public(self):
        print(f"N = {self.N}")
        print(f"e = {self.e}\n")
    
    def get_private(self):
        # print(f"d = {self.d}")
        return self.d

NPARTS = 3
fractions = [bytes_to_long(flag[len(flag)//NPARTS*i:len(flag)//NPARTS*(i+1)]) for i in range(NPARTS)]

print("[+] Here are my public keys:")
ns = [2, 3, 6]
rsas = [MyRSA(n) for n in ns]
private_exponents = [rsa.get_private() for rsa in rsas]

for rsa in rsas:
    rsa.get_public()

print("[+] Here are my flag fractions:")
for i in range(NPARTS):
    f = sum(fractions[j] * private_exponents[i]**(NPARTS-1-j) for j in range(NPARTS))
    print(f"[!] Fraction {i+1}: {f}")
debug = True

"""
Setting strict to true will stop the algorithm (and
return (-1, -1)) if we don't have a correct 
upperbound on the determinant. Note that this 
doesn't necesseraly mean that no solutions 
will be found since the theoretical upperbound is
usualy far away from actual results. That is why
you should probably use `strict = False`
"""
strict = False

"""
This is experimental, but has provided remarkable results
so far. It tries to reduce the lattice as much as it can
while keeping its efficiency. I see no reason not to use
this option, but if things don't work, you should try
disabling it
"""
helpful_only = True
dimension_min = 7  # stop removing if lattice reaches that dimension


############################################
# Functions
##########################################

# display stats on helpful vectors
def helpful_vectors(BB, modulus):
    nothelpful = 0
    for ii in range(BB.dimensions()[0]):
        if BB[ii, ii] >= modulus:
            nothelpful += 1

    print(nothelpful, "/", BB.dimensions()[0], " vectors are not helpful")


# display matrix picture with 0 and X
def matrix_overview(BB, bound):
    for ii in range(BB.dimensions()[0]):
        a = ('%02d ' % ii)
        for jj in range(BB.dimensions()[1]):
            a += '0' if BB[ii, jj] == 0 else 'X'
            if BB.dimensions()[0] < 60:
                a += ' '
        if BB[ii, ii] >= bound:
            a += '~'
        print(a)


# tries to remove unhelpful vectors
# we start at current = n-1 (last vector)
def remove_unhelpful(BB, monomials, bound, current):
    # end of our recursive function
    if current == -1 or BB.dimensions()[0] <= dimension_min:
        return BB

    # we start by checking from the end
    for ii in range(current, -1, -1):
        # if it is unhelpful:
        if BB[ii, ii] >= bound:
            affected_vectors = 0
            affected_vector_index = 0
            # let's check if it affects other vectors
            for jj in range(ii + 1, BB.dimensions()[0]):
                # if another vector is affected:
                # we increase the count
                if BB[jj, ii] != 0:
                    affected_vectors += 1
                    affected_vector_index = jj

            # level:0
            # if no other vectors end up affected
            # we remove it
            if affected_vectors == 0:
                print("* removing unhelpful vector", ii)
                BB = BB.delete_columns([ii])
                BB = BB.delete_rows([ii])
                monomials.pop(ii)
                BB = remove_unhelpful(BB, monomials, bound, ii - 1)
                return BB

            # level:1
            # if just one was affected we check
            # if it is affecting someone else
            elif affected_vectors == 1:
                affected_deeper = True
                for kk in range(affected_vector_index + 1, BB.dimensions()[0]):
                    # if it is affecting even one vector
                    # we give up on this one
                    if BB[kk, affected_vector_index] != 0:
                        affected_deeper = False
                # remove both it if no other vector was affected and
                # this helpful vector is not helpful enough
                # compared to our unhelpful one
                if affected_deeper and abs(bound - BB[affected_vector_index, affected_vector_index]) < abs(
                        bound - BB[ii, ii]):
                    print("* removing unhelpful vectors", ii, "and", affected_vector_index)
                    BB = BB.delete_columns([affected_vector_index, ii])
                    BB = BB.delete_rows([affected_vector_index, ii])
                    monomials.pop(affected_vector_index)
                    monomials.pop(ii)
                    BB = remove_unhelpful(BB, monomials, bound, ii - 1)
                    return BB
    # nothing happened
    return BB


def attack(N, e, m, t, X, Y):
    modulus = e

    PR.< x, y > = PolynomialRing(ZZ)
    a = N + 1
    b = N * N - N + 1
    f = x * (y * y + a * y + b) + 1

    gg = []
    for k in range(0, m + 1):
        for i in range(k, m + 1):
            for j in range(2 * k, 2 * k + 2):
                gg.append(x ^ (i - k) * y ^ (j - 2 * k) * f ^ k * e ^ (m - k))
    for k in range(0, m + 1):
        for i in range(k, k + 1):
            for j in range(2 * k + 2, 2 * i + t + 1):
                gg.append(x ^ (i - k) * y ^ (j - 2 * k) * f ^ k * e ^ (m - k))

    def order_gg(idx, gg, monomials):
        if idx == len(gg):
            return gg, monomials

        for i in range(idx, len(gg)):
            polynomial = gg[i]
            non = []
            for monomial in polynomial.monomials():
                if monomial not in monomials:
                    non.append(monomial)

            if len(non) == 1:
                new_gg = gg[:]
                new_gg[i], new_gg[idx] = new_gg[idx], new_gg[i]

                return order_gg(idx + 1, new_gg, monomials + non)

    gg, monomials = order_gg(0, gg, [])

    # construct lattice B
    nn = len(monomials)
    BB = Matrix(ZZ, nn)
    for ii in range(nn):
        BB[ii, 0] = gg[ii](0, 0)
        for jj in range(1, nn):
            if monomials[jj] in gg[ii].monomials():
                BB[ii, jj] = gg[ii].monomial_coefficient(monomials[jj]) * monomials[jj](X, Y)

    # Prototype to reduce the lattice
    if helpful_only:
        # automatically remove
        BB = remove_unhelpful(BB, monomials, modulus ^ m, nn - 1)
        # reset dimension
        nn = BB.dimensions()[0]
        if nn == 0:
            print("failure")
            return 0, 0

    # check if vectors are helpful
    if debug:
        helpful_vectors(BB, modulus ^ m)

    # check if determinant is correctly bounded
    det = BB.det()
    bound = modulus ^ (m * nn)
    if det >= bound:
        print("We do not have det < bound. Solutions might not be found.")
        print("Try with highers m and t.")
        if debug:
            diff = (log(det) - log(bound)) / log(2)
            print("size det(L) - size e^(m*n) = ", floor(diff))
        if strict:
            return -1, -1
    else:
        print("det(L) < e^(m*n) (good! If a solution exists < N^delta, it will be found)")

    # display the lattice basis
    if debug:
        matrix_overview(BB, modulus ^ m)

    # LLL
    if debug:
        print("optimizing basis of the lattice via LLL, this can take a long time")

    BB = BB.LLL()

    if debug:
        print("LLL is done!")

    # transform vector i & j -> polynomials 1 & 2
    if debug:
        print("looking for independent vectors in the lattice")
    found_polynomials = False

    for pol1_idx in range(nn - 1):
        for pol2_idx in range(pol1_idx + 1, nn):
            # for i and j, create the two polynomials
            PR.< a, b > = PolynomialRing(ZZ)
            pol1 = pol2 = 0
            for jj in range(nn):
                pol1 += monomials[jj](a, b) * BB[pol1_idx, jj] / monomials[jj](X, Y)
                pol2 += monomials[jj](a, b) * BB[pol2_idx, jj] / monomials[jj](X, Y)

            # resultant
            PR.< q > = PolynomialRing(ZZ)
            rr = pol1.resultant(pol2)

            # are these good polynomials?
            if rr.is_zero() or rr.monomials() == [1]:
                continue
            else:
                print("found them, using vectors", pol1_idx, "and", pol2_idx)
                found_polynomials = True
                break
        if found_polynomials:
            break

    if not found_polynomials:
        print("no independant vectors could be found. This should very rarely happen...")
        return 0, 0

    rr = rr(q, q)

    # solutions
    soly = rr.roots()

    if len(soly) == 0:
        print("Your prediction (delta) is too small")
        return 0, 0

    soly = soly[0][0]
    ss = pol1(q, soly)
    solx = ss.roots()[0][0]

    return solx, soly

def inthroot(a, n):
    return a.nth_root(n, truncate_mode=True)[0]

'''
n=3
phi1 = (p^2 + p + 1)(q^2 + q + 1)
f2 = m0*d1^2 + m1*d1 + m2
'''

N = 82898492840033848499679066573599199466262845944574446435099699953454086638324386416129279494828609729766998439132172194894188387716844097335523066318666261933348513791114624155336437054163128912934864480178839237943154511986161169068625070999701692457965233641625122455113801192492673037347038351956273261209
e = 4209437149177720414392052396995336370571472638739290885909782621676928212352728218779571626530884770305850882606520062302514835362331092897621059096111410844919671863579044484955054277159466422627065939698416080746679841734383574957303171143150437215717944527004524163060734647488552780385109395365103554265493136383680197786179491825415327877829363932241445886199163804911851983235568877189260370900147226881457732043676609664875472514523869518158935427849891304397052900751093562294098001282747462255107311383605819243052786444806092296448159814920695343700003324553167747140120222023780385726663202175975632841101

X = 1 << 256
Y = 2 * inthroot(Integer(2 * N), 2)
res = attack(N, e, 4, 2, X, Y)
b, c = res[1], N
Dsqrt =  inthroot(Integer(b^2-4*c),2)
p, q = (b + Dsqrt) // 2, (b - Dsqrt) // 2

p = 11115193571655981643028323108550693041153968818372992008741167962199978558269263501404542622452843466273897515259474630311844764203824460112544754903161827
q = 7458124080846154074703203775228063793095921609194518958985360092112085241527639903426152277377512681937094209982722994493765347290922190684486027516944467

在解出p,q后可以求d,然后是 enc = m0*d^{2} + m1*d + m2 看似简单,但发现m要大于d,这样直接取模就不成了,这时候需要爆破一下,毕竟比d也大不太多.

phi = (p^2 + p +1)*(q^2 + q +1)
d = inverse_mod(e, phi)

f2 = 23144924364202496361036242964551729244108242071387074122924446048219898057065538815277890013860024253422666710259842325295228086904295846675276536535237894072110755426259617054492417613772645109337095876879440959135444974146373938103

#m>d 
f4 = f2%d 
for i in range(0x200):
    m2 = f4+i*d
    tmp = long_to_bytes(m2)
    if not any([1 for v in tmp if v<0x20 or v>0x7f]):
        print(i, tmp)
        break
#127 b'15_cL053_t0_N^(n-1)_4nd_d<N^0.25}'

f3 = f2 - m2 
f3 //=d 
f3 %=d 
for i in range(0x200):
    m1 = f3+i*d
    tmp = long_to_bytes(m1)
    if not any([1 for v in tmp if v<0x20 or v>0x7f]):
        print(i, tmp)
        break
        
#290 b'pt0syst3m_c4n_b3_4tt4ck3d_wh3n_E_'
m0 = f2//d^2 - 290
print(long_to_bytes(m0))
#'cvctf{th15_fam1Ly_0f_RSA-like_cry'
#cvctf{th15_fam1Ly_0f_RSA-like_crypt0syst3m_c4n_b3_4tt4ck3d_wh3n_E_15_cL053_t0_N^(n-1)_4nd_d<N^0.25}

剩下两个题 PicoChip 1,PicoChip 2 附件下不来,回头看看网上有没有.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/515221.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

JavaCollection集合:概述、体系特点、常用API、遍历方式

一、集合概述 集合和数组都是容器 数组 特点&#xff1a;数组定义完成并启动后&#xff0c;类型确定、长度固定。 劣势&#xff1a;在进行增删数据操作的时候&#xff0c;数组是不太合适的&#xff0c;增删数据都需要放弃原有数组或者移位。 使用场景&#xff1a;当业务数…

JMeter 常用的几种断言方法,你会了吗?

JMeter是一款常用的负载测试工具&#xff0c;通过模拟多线程并发请求来测试系统的负载能力和性能。在进行性能测试时&#xff0c;断言&#xff08;Assertion&#xff09;是非常重要的一部分&#xff0c;可以帮助我们验证测试结果的正确性。下面介绍JMeter常用的几种断言方法。 …

MySQL 运算符解析

1.算术运算符 算术运算符主要用于数学运算&#xff0c;其可以连接运算符前后的两个数值或表达式&#xff0c;对数值或表达式进行加 &#xff08;&#xff09;、减&#xff08;-&#xff09;、乘&#xff08;*&#xff09;、除&#xff08;/&#xff09;和取模&#xff08;%&…

K8S:K8S部署常见错误及解决方法

目录 1、node节点kubelet服务起不来 2、安装cni网络插件时 kubectl get node master和node一直noready①有延时&#xff0c;需要等待10分钟左右&#xff0c;超过15分钟则有问题 3、部署报错kubectl get nodes No resources found 4、k8s部署报错error&#xff1a;kubectl ge…

OpenCV 直方图统计函数 cv::calcHist算是彻底弄明白了

参数说明 void calcHist( const Mat* images, int nimages,const int* channels, InputArray mask,OutputArray hist, int dims, const int* histSize,const float** ranges, bool uniform true, bool accumulate false );images 图像数组。每个图像的大小要一致&#xff0c…

龙的画法图片

由龙老师画素描中国龙的方法,大概可以遵循以下步骤: 确定龙的姿态和比例:在纸上简单地画出龙的基本形状和姿态,包括身体的长度,颈部、腿和尾巴的位置和比例关系。 添加细节:在基本形状的基础上,开始添加一些细节,如龙的头部、眼睛、鼻子、嘴巴、爪子等。注意要保持姿态和比例…

来,花半小时我带你入门vue

半小时入门vue 前言&#xff08;&#xff01;important&#xff09;学习vue的前提什么是vue&#xff1f;vue的引入方式实例化一个对象和创建一个对象实例化一个vue对象模板语法1.插值表达式2.v-text和v-html指令3.v-bind指令4.v-on指令5.v-model指令6.v-if和v-show指令7.v-for指…

浅谈一下接口工具(jmeter、postman、swagger等)

一、接口都有哪些类型&#xff1f; 接口一般分为两种&#xff1a;1.程序内部的接口 2.系统对外的接口 系统对外的接口&#xff1a;比如你要从别的网站或服务器上获取资源或信息&#xff0c;别人肯定不会把 数据库共享给你&#xff0c;他只能给你提供一个他们写好的方法来获取…

MySQL中文乱码问题记录

概述 中文乱码是我们日常编程开发中经常会遇到的问题&#xff0c;包括&#xff1a; 浏览器&#xff08;页面&#xff09;显示乱码&#xff0c;参考记一次中文乱码排查解决流程Linux系统字体缺失导致中文乱码&#xff0c;参考Linux环境下Selenium截图乱码及字体安装及与字符集…

Excel突然弹出 请注意!您的文档的部分内容可能包含文档检测器无法删除的个人信息

环境&#xff1a; excel2016 Win10 专业版 问题描述&#xff1a; Excel突然弹出 请注意&#xff01;您的文档的部分内容可能包含文档检测器无法删除的个人信息 解决方案&#xff1a; 1.打开excel点击左上角的“文件”菜单项 2.依次选择&#xff1a;选项-》信任中心-》信…

(学习日记)2023.5.11

写在前面&#xff1a; 由于时间的不足与学习的碎片化&#xff0c;写博客变得有些奢侈。 但是对于记录学习&#xff08;忘了以后能快速复习&#xff09;的渴望一天天变得强烈。 既然如此 不如以天为单位&#xff0c;以时间为顺序&#xff0c;仅仅将博客当做一个知识学习的目录&a…

【小沐学Python】Python实现Web图表功能(ECharts.js,Flask+Vue)

文章目录 1、简介1.1 Vue1.2 Flask 2、Flask echarts.js Vue2.1 Vue2 (CDN) Vue-ECharts2.2 Vue3 (CDN) Vue-ECharts2.3 Vue3 (npm) Flask / nodejs 3、FAQ3.1 Fatal error in launcher: Unable to create process using "c:\users\tomcat\desktop\flask_english\adm…

【华为HCIP | 高级网络工程师】刷题日记(6)

个人名片&#xff1a; &#x1f43c;作者简介&#xff1a;一名大二在校生 &#x1f43b;‍❄️个人主页&#xff1a;落798. &#x1f43c;个人WeChat&#xff1a;落798. &#x1f54a;️系列专栏&#xff1a;零基础学java ----- 重识c语言 ---- 计算机网络 &#x1f413;每日一…

机器学习工作流程

机器学习的定义机器学习的工作流程获取到的数据集的特性 1、什么是机器学习 机器学习是从数据中自动分析获得模型&#xff0c;并利用模型对未知数据进行预测。 2、机器学习工作流程 机器学习工作流程总结 1、获取数据2、数据基本处理3、特征工程4、机器学习&#xff08;模型…

Maven POM和Maven构建配置文件操作笔记

目录 我到现在还是没有太搞懂Maven的作用&#xff0c;我只是有一个模糊的概念就是它可以添加很多的依赖&#xff0c;这样会使项目搭建起来更加方便&#xff0c;你可以谈谈你的看法吗&#xff1f; Maven POM 父&#xff08;Super&#xff09;POM POM 标签大全详解 Maven 构建…

【云原生】Kubeadm部署k8s

【云原生】-- Kubeadm部署k8s 一、部署步骤二、部署kubernetes1、所有节点关闭防火墙 核心防护 iptables规则 swap交换2、修改主机名3、调整内核参数 三、安装Docker1、所有节点安装docker2、所有节点配置Kubernetes源3、所有节点安装kubeadm&#xff0c;kubelet和kubectl 四、…

【Java】抽象类与接口

文章目录 1.抽象类1.1抽象方法 2.接口3.抽象类和接口的区别3.1代码中区分&#xff1a;3.2设计层面区分 在面向对象编程中&#xff0c;抽象是非常重要的一个特征。在Java中可以通过抽象类或接口的形式实现这一特性。 1.抽象类 Java关键字 abstract对应抽象类的使用 1.1抽象方法…

【快速排序】

快速排序 递归法 1、快排 快速排序算法使基于分治策略的一个排序算法&#xff0c;其基本思想是&#xff0c;对于输入的子数组 nums[left : right] 按以下3个步骤排序&#xff1a; &#xff08;1&#xff09;分解&#xff1a;以 nums[left] 为基准元素将 nums[left : right] …

Wisej.NET 3.2 WiseJ Framework Crack

Web Development for Business Applications build ›› migrate ›› modernize ›› See the amazing things people are doing with Wisej.NET Customer storiesmadewithWisej.com Wisej 3.2 is released! read more ›› Wisej.NET Rapid .NET Web Development - 3.2 beta …

【深度学习】第一门课 神经网络和深度学习 Week 1 深度学习概论

文章目录 目录 目录 文章目录 1.1 欢迎来到深度学习 1. 为什么要学深度学习&#xff1f; 2. 我们将学习到哪些内容&#xff1f; 1.2 什么是神经网络&#xff1f; 引例 问题 题解 抽象 复杂化问题 建模 1.3 用神经网络进行监督学习 1. 概念辨析 2. 用神经网络进…