实现chatgpt自然对话

news2024/12/29 8:04:33

1.概述

ChatGPT是当前自然语言处理领域的重要进展之一,通过预训练和微调的方式,ChatGPT可以生成高质量的文本,可应用于多种场景,如智能客服、聊天机器人、语音助手等。本文将详细介绍ChatGPT的原理、实战演练和流程图,帮助读者更好地理解ChatGPT技术的应用和优势。

2.内容

在当今快速发展的人工智能领域,自然语言处理(Natural Language Processing, NLP)技术是研究的重要方向之一。NLP技术的目标是帮助计算机更好地理解和处理人类语言,从而实现人机交互、自然语言搜索、文本摘要、语音识别等应用场景。

ChatGPT是当前自然语言处理领域的重要进展之一,可以生成高质量的文本,可应用于多种场景,如智能客服、聊天机器人、语音助手等。本文将详细介绍ChatGPT的原理、实战演练和流程图,帮助读者更好地理解ChatGPT技术的应用和优势。

2.1 原理分析

ChatGPT是由OpenAI推出的一种基于Transformer的预训练语言模型。在自然语言处理中,预训练语言模型通常是指使用无标签文本数据训练的模型,目的是为了提高下游任务(如文本分类、命名实体识别、情感分析)的性能。ChatGPT是预训练语言模型的一种,它采用了单向的Transformer模型,通过大规模的文本数据预训练模型,再在具体任务上进行微调,从而实现高质量的文本生成和自然对话。

下面我们来详细介绍一下ChatGPT的原理。

2.1.1 Transformer模型

ChatGPT模型采用了单向的Transformer模型,Transformer模型是一种基于注意力机制的编码-解码框架,由Google在2017年提出。它是目前自然语言处理中应用最广泛的模型之一,已经被证明在多种任务上取得了比较好的性能。

Transformer模型的核心是多头注意力机制,它允许模型在不同位置上对输入的信息进行不同的关注,从而提高模型的表达能力。同时,Transformer模型采用了残差连接和Layer Normalization等技术,使得模型训练更加稳定,减少了梯度消失和梯度爆炸等问题。

在Transformer模型中,输入的序列首先经过Embedding层,将每个词映射为一个向量表示。然后输入到多层Transformer Encoder中,每一层包括多头注意力机制和前向传播网络。在多头注意力机制中,模型会计算出每个位置与其他位置的关联程度,从而得到一个权重向量,将这个权重向量应用到输入上,就得到了每个位置的加权表示。接下来,模型会将每个位置的加权表示与原始输入进行残差连接和Layer Normalization,从而得到更好的表达。

在ChatGPT模型中,Encoder和Decoder是相同的,因为它是单向的模型,只能使用历史信息生成当前的文本。每次生成一个新的词时,模型会将历史文本作为输入,通过Decoder生成下一个词。

2.1.2 预训练

ChatGPT模型的预训练使用的是大规模的无标签文本数据,例如维基百科、网页文本等,这些数据可以包含数十亿甚至数百亿的单词。预训练的目的是让模型学习到文本的语言规律和语义信息,从而提高模型的泛化能力。预训练使用的是语言建模任务,即在给定部分文本的情况下,模型预测下一个词是什么。预测的损失函数采用交叉熵损失函数,通过反向传播和随机梯度下降算法更新模型参数。

2.1.3 微调

ChatGPT模型的微调是指在特定的任务上,针对不同的数据集,对预训练模型进行微调。微调的目的是将模型应用到具体的场景中,例如聊天机器人、智能客服等。微调过程中,我们会为模型添加一些特定的输出层,根据具体的任务来调整模型的参数。

2.2 ChatGPT

ChatGPT是一款通用的自然语言生成模型,即GPT翻译成中文就是生成型预训练变换模型。这个模型被互联网巨大的语料库训练之后,它就可以根据你输入的文字内容,来生成对应的文字回答。也就是常见的聊天问答模式,比如:

 语言模型的工作方式,是对语言文本进行概率建模。

 用来预测下一段输出内容的概率,形式上非常类似于我们小时候玩的文字接龙游戏。比如输入的内容是你好,模型就会在可能的结果中,选出概率最高的那一个,用来生成下一部分的内容

从体验的反馈来看,ChatGPT对比其他的聊天机器人,主要在这样几个方面上进步明显:

  • 首先,它对用户实际意图的理解有了明显的提升,以前用过类似的聊天机器人,或者自动客服的朋友,应该会经常遇到机器人兜圈子,甚至答非所问的情况,而ChatGPT在这方面有了显著的提升,大家在实际体验了之后感觉都非常的明显;
  • 其次,是非常强的上下文衔接能力,你不仅能够问他一个问题,而且还可以通过不断追加提问的方式,让它不断的改进回答内容,最终达到用户想要的理想效果。
  • 然后,是对知识和逻辑的理解能力,当你遇到某个问题,它不仅只是给一个完整的回答,同时,你对这个问题的各种细节追问,它都能回答出来。

ChatGPT目前暂时还没有看到与之相关的论文,但是,官网有一篇Instruct GPT和ChatGPT是非常接近的。在官网上也指出了ChatGPT是InstructGPT的兄弟模型,它经过训练可以按照指示中的说明进行操作并提供详细的响应。

 这里我们可以看到2个模型的训练过程非常的相似,文章地址:

  • https://openai.com/research/instruction-following

  • https://openai.com/blog/chatgpt

ChatGPT训练流程如下所示:

 InstructGPT训练流程如下所示:

 在OpenAI关于InstructiGPT中的论文中,有可以找到这些直观优势的量化分析。

InstructGPT对比上一代GPT3:

  • 首先在71%的情况下,InstructGPT生成的回答要比GPT3模型的回答要更加符合训练人员的喜好。这里提到GPT3是OpenAI的上一代自然语言生成模型。
  • 其次,InstructGPT在回答问题的真实程度上,也会更加可靠,当两个模型同时被问到他们完全不知道的内容时,InstructGPT只有21%的情况会编造结果,而GPT3就高了,多达到了41%。这里,我们可以发现,即便是最厉害的模型它也有五分之一的概率会胡说八道;
  • 除此之外,InstructGPT在产生有毒回答的概率上也减小了25%。

所以,汇总下来,InstructGPT比上一代模型能够提供更加真实可靠的回答,并且回答的内容也会远比上一代更加符合用户的意愿。

3.如何做到这些提升的呢?

我们要看清楚ChatGPT,为什么可以做到如此出色的效果。就需要我们把视角稍微拉远一点,看一看这款模型,近几年的发展历史。
ChapGPT是OpenAI的另一款模型,它是InstructGPT的兄弟模型,也就是基于InstructGPT做了一些调整,而InstructGPT的上一代是GPT3,再往上一个版本是GPT2,再往上是GPT,那再往前就是Google的那一篇关于transformer的著名论文(https://arxiv.org/pdf/1706.03762.pdf),这里需要提一下的是,同样是基于transformer结构的,还有Google自家的BERT架构,以及对应的分支。
所以,我们能够得到这样一个分支图。

这里,本人能力有限,没法对每一篇论文分析总结。但是,想提到一些自己在学习的过程中感觉比较有趣的决定和突破。
首先,同样是transformer架构上分支出来的,BERT和GPT的一大不同,来自于他们transformer具体结构的区别,BERT使用的是transformer的encoder组件,而encoder的组件在计算某个位置时,会关注他左右两侧的信息,也就是文章的上下文。而GPT使用的是transformer decoder组件,decoder组件在计算某个位置时,只关注它左侧的信息,也就是文章的上文。

我们如果用一个通俗的比喻就是,BERT在结构上对上下文的理解会更强,更适合嵌入式的表达,也就是完型填空式的任务。而GPT在结构上更适合只有上文,完全不知道下文的任务,而聊天恰好就是这样的场景。
另一个有趣的突破,来自模型量级上的提升。

 从GPT到GPT2,再到GPT3,OpenAI大力出奇迹,将模型参数从1.17亿,提升到15亿,然后进一步暴力提升到了1750亿个。以至于GPT3比以前同类型的语言模型,参数量增加了10倍以上。

 同时,训练数据量也从GPT的5GB,增加到GPT2的40GB,再到GPT3的45TB,与此相关的是在方向上(https://arxiv.org/pdf/2005.14165.pdf)

OpenAI没有追求模型在特定类型任务上的表现,而是不断的增加模型的泛化能力。同时,GPT3的训练费用,也到达了惊人的1200万美元。

那下一个有趣的节点,就达到了今天的主角ChatGPT的兄弟,InstructGPT。从GPT3到InstructGPT的一个有趣改进。来自于引入了人类的反馈。用OpenAI论文的说法是,在InstructGPT之前,大部分大规模语言模型的目标,都是基于上一个输入片段token,来推测下一个输入片段。

然而这个目标和用户的意图是不一致的,用户的意图是让语言模型,能够有用并且安全的遵循用户的指令,那这里的指令instruction,也就是InstructGPT名字的来源,当然,也就呼应的今天ChatGPT的最大优势,对用户意图的理解。为了达到这个目的,他们引入了人类老师,也就是标记人员,通过标记人员的人工标记,来训练出一个反馈模型,那这个反馈模型,实际上就是一个模仿喜好,用来给GPT3的结果来打分的模型,然后这个反馈模型再去训练GPT3,之所以没有让标记人员,直接训练GPT3,可能是因为数据量太大的原因吧。

所以,这个反馈模型,就像是被抽象出来的人类意志。可以用来激励GPT3的训练,那整个训练方法,就被叫做基于人类反馈的强化学习。至此简易版的InstructGPT的前世今生就介绍完了。我们来回顾一下OpenAI一直在追求的几个特点:

  • 首先,是只有上文的decoder结构,这种结构下训练出来的模型,天然适合问答这种交互方式;
  • 然后,是通用模型,OpenAI一直避免在早期架构和训练阶段,就针对某个特定的行业做调优,这也让GPT3有着很强的通用能力
  • 最后,是巨量数据和巨量参数,从信息论的角度来看,这就像深层的语言模型,涵盖的人类生活中,会涉及的几乎所有的自然语言和编程语言,当然,这也就极大的提高了个人或者小公司参与的门槛。

既然说到了原理,还有一个方面是前面没有提及到的,就是连续对话的能力。所以,ChatGPT是如何做到能够记住对话的上下文的呢?
这一能力,其实在GPT3时代就已经具备了,具体做法是这样的,语言模型生成回答的方式,其实是基于一个个的token,这里的token,可以粗略的理解为一个个单词。所以ChatGPT给你生成一句话的回答,其实是从第一个词开始,重复把你的问题以及当前生成的所有内容,再作为下一次的输入,再生成下一个token,直到生成完整的回答。

4.实战演练

为了更好地理解ChatGPT模型的实际应用,我们可以尝试使用Hugging Face提供的Transformers库来构建一个聊天机器人模型。

1.准备数据集

我们可以使用Cornell电影对话数据集来作为ChatGPT模型的训练数据集。Cornell电影对话数据集包含了超过220,579条对话记录,每条记录都有一个问题和一个回答。我们可以将问题和回答组合在一起,形成聊天机器人的训练样本。

2.数据预处理

在训练ChatGPT模型之前,我们需要对数据进行预处理,将文本转换为数字表示。我们可以使用tokenizer将文本转换为tokens,并将tokens转换为模型输入的数字表示。在使用Hugging Face的Transformers库中,我们可以使用AutoTokenizer自动选择适合的tokenizer,根据模型的类型和配置来进行初始化。

以下是对电影对话数据集进行预处理的代码:

from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('distilgpt2')
pad_token_id = tokenizer.pad_token_id
max_length = 512

def preprocess_data(filename):
    with open(filename, 'r', encoding='iso-8859-1') as f:
        lines = f.readlines()

    conversations = []
    conversation = []
    for line in lines:
        line = line.strip()
        if line.startswith('M '):
            conversation.append(line[2:])
        elif line.startswith('E '):
            conversation.append(line[2:])
            if len(conversation) > 1:
                conversations.append(conversation)
            conversation = []

    questions = []
    answers = []
    for conversation in conversations:
        for i in range(len(conversation) - 1):
            questions.append(conversation[i])
            answers.append(conversation[i+1])

    inputs = tokenizer(questions, answers, truncation=True, padding=True, max_length=max_length)

    return inputs, pad_token_id

inputs, pad_token_id = preprocess_data('movie_conversations.txt')

在上述代码中,我们使用了AutoTokenizer来初始化tokenizer,并指定了最大的序列长度为512。同时,我们也定义了padding token的id,并使用preprocess_data函数来对Cornell电影对话数据集进行预处理。在预处理过程中,我们将每个问题和回答组合在一起,使用tokenizer将文本转换为tokens,并将tokens转换为数字表示。我们还设置了padding和truncation等参数,以使得所有输入序列长度相同。

3.训练模型

在对数据集进行预处理后,我们可以使用Hugging Face的Transformers库中提供的GPT2LMHeadModel类来构建ChatGPT模型。GPT2LMHeadModel是一个带有语言模型头的GPT-2模型,用于生成与前面输入的文本相关的下一个词。

以下是使用GPT2LMHeadModel训练ChatGPT模型的代码:

from transformers import GPT2LMHeadModel, Trainer, TrainingArguments

model = GPT2LMHeadModel.from_pretrained('distilgpt2')
model.resize_token_embeddings(len(tokenizer))

training_args = TrainingArguments(
    output_dir='./results',
    num_train_epochs=3,
    per_device_train_batch_size=4,
    save_total_limit=2,
    save_steps=1000,
    logging_steps=500,
    evaluation_strategy='steps',
    eval_steps=1000,
    load_best_model_at_end=True,
)

trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=inputs['input_ids'],
    data_collator=lambda data: {'input_ids': torch.stack(data)},
)

trainer.train()

在上述代码中,我们首先使用GPT2LMHeadModel来初始化ChatGPT模型,并调整Embedding层的大小以适应我们的tokenizer。接下来,我们定义了TrainingArguments来配置训练参数。其中包括了训练的轮数、每批次的大小、模型保存路径等信息。最后,我们使用Trainer类来训练模型。在这里,我们将输入数据传递给train_dataset参数,并使用一个data_collator函数将输入数据打包成一个批次。

4.生成文本

在训练完成后,我们可以使用ChatGPT模型来生成文本。在Hugging Face的Transformers库中,我们可以使用pipeline来实现文本生成。

以下是使用ChatGPT模型生成文本的代码:

from transformers import pipeline

generator = pipeline('text-generation', model=model, tokenizer=tokenizer)

def generate_text(prompt):
    outputs = generator(prompt, max_length=1024, do_sample=True, temperature=0.7)
    generated_text = outputs[0]['generated_text']
    return generated_text

generated_text = generate_text('Hello, how are you?')
print(generated_text)

在上述代码中,我们首先使用pipeline函数来初始化一个文本生成器,其中指定了ChatGPT模型和tokenizer。接下来,我们定义了generate_text函数来使用生成器生成文本。在这里,我们传入一个prompt字符串作为生成的起始点,并使用max_length参数来指定生成文本的最大长度,使用do_sample和temperature参数来控制文本的随机性和流畅度。

5.总结

ChatGPT是一个强大的自然语言生成模型,可以用于生成对话、推荐、文本摘要等多种任务。在本文中,我们介绍了ChatGPT的原理、实现流程和应用场景,并提供了Cornell电影对话数据集的预处理和ChatGPT模型的训练代码。通过使用Hugging Face的Transformers库,我们可以轻松地构建和训练ChatGPT模型,并使用pipeline来生成文本。希望本文能够帮助读者更好地理解ChatGPT,以及如何应用自然语言生成技术来解决实际问题。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/484741.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

C/C++每日一练(20230503)

目录 1. 输出最长的递增数字字符串 🌟🌟 2. 缺失的第一个正数 🌟🌟🌟 3. 最大矩形 🌟🌟🌟 🌟 每日一练刷题专栏 🌟 Golang每日一练 专栏 Python每日…

SaaS模医学检验信息管理系统源码,系统预设几十种报告模板,可在几分钟内批量生成报告

实验室信息管理系统云LIS源码 SaaS模式运维管理系统 云LIS系统源码是一款全面的实验室信息管理系统源码,其主要功能包括样本管理、检测项目管理、质控管理、报告管理、数据分析、两癌筛查等多个方面。具有独立的配套SaaS模式运维管理系统,支持远程运维&…

Redis高频面试题,使用场景

一、缓存 1、什么是缓存穿透 ? 怎么解决 ? 缓存穿透 查询一个不存在的数据,mysql查询不到数据也不会直接写入缓存,就会导致每次请求都查数据库。 解决 方案一:缓存空数据,查询返回的数据为空,仍把这个空结果进行…

《花雕学AI》28:革命性的 ChatGPT for SEO——让您的排名飙升 50%!

引言: 如果您想写篇有吸引力的文章,或者您是一个博客和网站的拥有者,那么您一定知道 SEO(搜索引擎优化)的重要性。SEO 可以帮助您提高相应的流量、转化率和收入,但是 SEO 也是一个复杂和耗时的过程&#x…

【开源项目】Dynamic-Tp核心流程源码解读

序.介绍 dynamic-tp 是一款动态线程池组件,可以实现线程池的实时动态调参及监控报警,线程池配置放在配置中心统一管理,达成业务代码零侵入,支持多配置中心的选择和常见的第三方组件的线程池的集成管理。 官网: https://dynamict…

C++学习day--01 C生万物

1、C/C学习中遇到的问题: 1. 大部分初学者,学习 C/C 都是从入门到放弃。 C/C太难吗? 2. 90% 以上的初学者,学完 C/C 以后,考试完了,书看完了, 但还是不会做项目 是学的不够好吗&#xff1…

基于KZG多项式承诺方案的RLN

1. 引言 RLN——Rate-Limiting Nullifier为PSE团队主导的项目,源自: Barry White Hat 2019年博客 Semaphore RLN, rate limiting nullifier for spam prevention in anonymous p2p setting RLN(Rate-Limiting Nullifier)是一种…

Servlet原理

什么是Servlet? Servlet是JavaWeb应用程序中的一种Java类,用于接收和处理来自客户端的请求,并将生成的响应发送回客户端。 Servlet是按照Java Servlet规范开发的,可以通过Servlet容器(如Tomcat)来管理和运行。Servl…

二十二、SQL 数据分析实战(案例1~案例10)

文章目录 案例1:用户信息表 stu_table案例2:员工绩效表 score_table案例3:销售冠军信息表 month_table案例4:月销售额记录表 sale_table案例5:每季度员工绩效得分表 score_info_table案例6:员工信息表 stu_…

【大数据】Hadoop总结

本文对于Hadoop中的HDFS和MapReduce的相关面试重点进行了总结,下篇将介绍调优、数据倾斜等进阶知识。 Hadoop总结 一、概述1. Hadoop特性2. HDFS结构HDFS 架构 二、HDFS分布式文件系统1 概述2. HDFS存储数据架构图NameNodeDataNode 3 HDFS优点4 HDFS缺点&#xff08…

利用 Delte-Sigma ADC简化电路设计

很多时候在电路中选择合适的 ADC可以很大程度上简化前端的电路。这里我们一起来看一个电阻电桥的例子: 这里用到了一只仪表放大器和一只运算放大器,他们实际上主要完成了三个功能: 1. 抑制了 2.5V的共模信号; 2. 将-1…

「业务架构」波特的五力分析教程介绍

波特五力分析模型最早出现在哈佛商学院教授迈克尔E波特1979年发表在《哈佛商业评论》上的文章中。这篇论文的发表在历史上改变了企业、组织甚至国家对战略的理解。自《哈佛商业评论》创刊以来,它被评为十大最具影响力的论文之一。 五力分析可以帮助公司评估行业吸引…

Baumer工业相机堡盟工业相机如何联合BGAPISDK和Halcon实现图像的对数Log变换算法增强(C#)

Baumer工业相机堡盟工业相机如何联合BGAPISDK和Halcon实现图像的对数Log变换算法增强(C#) Baumer工业相机Baumer工业相机使用图像算法增加图像的技术背景Baumer工业相机通过BGAPI SDK联合Halcon使用Log图像增强算法1.引用合适的类文件2.BGAPI SDK在图像回…

【ChatGLM】本地版ChatGPT ?6G显存即可轻松使用 !ChatGLM-6B 清华开源模型本地部署教程

目录 感谢B站秋葉aaaki大佬 前言 部署资源 部署流程 实机演示 ChatGML微调(人格炼成)(个人感觉蛮有趣的地方) 分享有趣の微调人格 实机演示(潘金莲人格) 感谢B站秋葉aaaki大佬 秋葉aaaki的个人空间…

《可穿戴监测中的数据质量评估》阅读笔记

目录 一、论文摘要 二、论文十问 三、论文亮点与不足之处 四、与其他研究的比较 五、实际应用与影响 六、个人思考与启示 参考文献 一、论文摘要 从手腕捕获的神经生理信号的可穿戴记录为癫痫监测提供了巨大的潜力。然而,数据质量仍然是影响数据可靠性的最具…

康耐视Visionpro常见问题汇总-视觉人机器视觉粉丝-千问之六十五解答

(2023年5月2日更,下次更新2023年10月1日-10月7日) Question0: 康耐视visionpro9.8/9.9-BeadInspect工具详细使用流程 原因分析或解决办法 康耐视visionpro9.8-BeadInspect工具详细使用流程 (qq.com) Question1: C#与visisionpro联合开发exe文件开机启动设置 原因分析…

Java 基础进阶篇(八)—— 匿名内部类与 Lambda 表达式

文章目录 一、内部类概述二、需要了解的内部类2.1 静态内部类2.2 成员内部类2.3 局部内部类2.4 面试笔试题 三、匿名内部类 ★四、Lambda表达式 ★4.1 Lambda 表达式的概述4.2 Lambda 表达式的省略规则4.3 Lambda 的使用 一、内部类概述 内部类就是定义在一个类里面的类&#…

SPSS如何管理数据之案例实训?

文章目录 0.引言1.数据文件的分解2.数据文件的横向合并3.数据文件的纵向合并4.数据文件的变换5.观测量的加权6.根据已存在的变量建立新变量7.产生计数变量8.对变量自身重新赋值9.赋值生成新的变量10.变量取值的求等级11.缺失数据的处理12.数据的汇总13.由变量组到观测量组的重组…

hd debug - DAPLink的资料

文章目录 DAPLink的资料概述笔记库迁出的技巧END DAPLink的资料 概述 查资料时, 看到有DAPLink的资料, 记录一下. 笔记 DAPLink项目分为软件和硬件2部分, 不在一个库中. 总览 : https://daplink.io/ 这个页面上说了软件和硬件项目的库地址. 软件库地址 : https://github.…

余弦相似度算法进行客户流失分类预测

余弦相似性是一种用于计算两个向量之间相似度的方法,常被用于文本分类和信息检索领域。具体来说,假设有两个向量A和B,它们的余弦相似度可以通过以下公式计算: 其中,dot_product(A, B)表示向量A和B的点积,no…