ImageJ实践——测量大小/长短(以细胞为例)

news2025/1/9 16:44:56

ImageJ是一款功能强大的图像处理软件。毫无疑问它在测量方面提供了十分便利的功能。下面我将以测量细胞的长短、大小(面积)为例,详细介绍ImageJ的测量操作流程。

1. ImageJ打开图像文件

在这里插入图片描述
在弹出的文件选择对话框中选择目标文件,即可

2. 设置标尺

为了测量,我们需要设置图像文件的标尺,即需要知道图像像素和实际长度单位的比例,以便软件可以直接计算出实际数据。

  • 首先,点击ImageJ工具栏中的直线选区工具(即下图中绿框内)
  • 然后在图像中创建一个已知长度的直线选区(例如下图中的20um)。
  • 最后点击Analyze菜单,点击Set Scale … 命令。在弹出的对话框中,需要将Known distance设置为已知长度(例如本文的20),将Unit of length设置为度量单位(例如本文的um)。点击OK即可。

tip:在ImageJ中,微米可以用um表示。
在这里插入图片描述
在这里插入图片描述

3. 设置测量选项

ImageJ提供了许多测量功能,可以打开Analyze菜单的Set Measurements…,在弹出的对话框中查看并勾选希望测量的功能。
在这里插入图片描述
根据需要,我选取了测量:

  • 选区面积(Area):即细胞的大小
  • 选区拟合矩形(Bounding rectangle):勾选此项,会测量出BX,BY,Width和Height。其中BX,BY是拟合矩形的左上角坐标,Width和Height是拟合矩形的长度和宽度
  • 文件名(Display label):勾选此项,会在每次测量时在结果首列中显示来源文件(以防忘记数据来源)

确认后点击OK即可。

在这里插入图片描述

4. 通过自由选区工具测量

首先点击自由选区工具(即下图绿框1),然后在图像上通过持续按压鼠标左键描出细胞形状(即下图绿框2中的细黄线),最后点击AnalyzeMeasure,或直接使用快捷键Ctrl + M,即可完成一次测量。
在这里插入图片描述

5. 测量结果保存

当完成第一次测量后,ImageJ就会显示出一个结果表:
在这里插入图片描述
在这个表中,包含了你想要测量出的数据,例如上图中从左到后依次是:标签、面积、拟合矩形左上角的横坐标、拟合矩形左上角的纵坐标、拟合矩形的宽、拟合矩形的高。==如果要保存结果的话,可以直接选中并复制,也可以在结果表的 File 中进行保存。

注意事项

在本文的例子中,先不论测量的拟合矩形(Bounding rectangle)是否为最小拟合矩形,虽然这也是一个可大可小的问题,Width和Height分别是宽和高(仅表示横向长度和纵向长度),而不是宽和长(即表示短边长度和长边长度),就会出现宽比高更长的情况,需要对结果再次进行处理,通过比较Width和Height确定出长短边,以便再进一步计算长宽的比值、各自的极值、均值等。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/476218.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Spring Data Elasticsearch--ElasticsearchRestTemplate--使用/教程/实例

原文网址:Spring Data Elasticsearch--ElasticsearchRestTemplate--使用/教程/实例_IT利刃出鞘的博客-CSDN博客 简介 说明 本文用实例来介绍如何使用Spring Data Elasticsearch的ElasticsearchRestTemplate来操作ES。包括:索引的增删等、文档的增删改查…

【拓扑排序】课程表系列

文章目录 课程表(环检测算法)1. DFS2. BFS 课程表 II(拓扑序列)1. DFS2. BFS 课程表 IV(记忆化搜索)1. DFS2. BFS 课程表(环检测算法) 1. DFS 先修课程之间的关系可以用有向图表示&…

AI题目整理

1、网络配置时batchsize的大小怎样设置?过小和过大分别有什么特点? Batch size是指一次迭代过程中,输入到神经网络的样本数量。 batchsize太小的缺点: ①耗时长,训练效率低。 ②训练数据就会非常难收敛,从而导致欠拟合。 batch…

MySQL后台线程详解

前言 MySQL的服务实现通过后台多个线程、内存池、文件交互来实现对外服务的,不同线程实现不同的资源操作,各个线程相互协助,共同来完成数据库的服务。本章简单总结MySQL的一些后台线程以及主要作用。 本章收录在MySQL性能优化原理实战专栏&am…

js常见混淆加密技术

下面,我将通过一个案例来演示如何使用JavaScript混淆加密技术来保护你的网站。 假设你有一个网站,其中包含一个登录页面,该页面的JavaScript代码如下所示: function login(username, password) {if (username "admin"…

Doris(21):Doris的函数—日期函数

1 CONVERT_TZ(DATETIME dt, VARCHAR from_tz, VARCHAR to_tz) 转换datetime值dt,从 from_tz 由给定转到 to_tz 时区给出的时区,并返回的结果值。 如果参数无效该函数返回NULL。 select convert_tz(2019-08-01 13:21:03, Asia/Shanghai, America/Los_Angeles); select co…

大数据-玩转数据-初识FLINK

一、初识Flink Flink采用一只松鼠的彩色图案作为logo Apache Flink是一个框架和分布式处理引擎,用于对无界和有界数据流进行有状态计算。Flink被设计在所有常见的集群环境中运行,以内存执行速度和任意规模来执行计算 二、Flink的重要特点 1、事件驱动…

mysql与redis区别

一、.redis和mysql的区别总结 (1)类型上 从类型上来说,mysql是关系型数据库,redis是缓存数据库 (2)作用上 mysql用于持久化的存储数据到硬盘,功能强大,但是速度较慢 redis用于存储使…

一篇你看得懂的SNP

单核苷酸多态性,(Single Nucleotide Polymorphism,简称SNP)指的是由单个核苷酸—A,T,C或G的改变而引起的DNA序列的改变,造成包括人类在内的物种之间染色体基因组的多样性。是指在基因组上单个核苷酸的变异,…

朴素贝叶斯分类器with案例:基于SMS Spam Collection数据集的广告邮件分类

目录 贝叶斯分类器何为朴素案例:基于SMS Spam Collection数据集的广告邮件分类SMS数据集词向量表示Laplacian平滑训练过程分类过程 完整代码 贝叶斯分类器 首先要理解贝叶斯决策的理论依据,引用西瓜书上的原话:对于分类任务,在所…

(基础算法)高精度加法,高精度减法

高精度加法 什么叫做高精度加法呢?包括接下来的高精度减法,高精度乘法与除法都是同一个道理。正常来讲的话加减乘除,四则运算的数字都是整数,也就是需要在int的范围之内,但当这个操作数变得非常"大"的时候&…

《面试1v1》java反射

我是 javapub,一名 Markdown 程序员从👨‍💻,八股文种子选手。 面试官: 你好,请问你对 Java 反射有了解吗? 候选人: 是的,我了解一些。 面试官: 那你能简单…

离散数学集合论

集合论 主要内容 集合基本概念 属于、包含幂集、空集文氏图等 集合的基本运算 并、交、补、差等 集合恒等式 集合运算的算律,恒等式的证明方法 集合的基本概念 集合的定义 集合没有明确的数学定义 理解:由离散个体构成的整体称为集合&#xff0c…

【五一创作】【Midjourney】Midjourney 连续性人物创作 ② ( 获取大图和 Seed 随机种子 | 通过 seed 随机种子生成类似图像 )

文章目录 一、获取大图和 Seed 随机种子二、通过 seed 种子生成类似图像 一、获取大图和 Seed 随机种子 注意 : 一定是使用 U 按钮 , 在生成的大图的基础上 , 添加 信封 表情 , 才能获取该大图的 Seed 种子编码 ; 在上一篇博客生成图像的基础上 , 点击 U3 获取第三张图的大图 ;…

电子数据取证之宝塔面板

一、宝塔面板介绍 1、官网bt.com,是提升运维效率的服务器管理软件,支持一键WAMP/LAMP/LNMP等100多项服务器管理功能;是跨平台的软件,同时支持Windows和Linux。开源永久免费。提高工作效率,对小白比较友好。 2、怎么看服…

【网络socket编程----预备知识和UDP服务器模拟实现】

文章目录 一、预备知识1.1 理解IP地址和端口号1.2 认识TCP协议和UDP协议1.3 网络字节序1.4 socket编程接口和sockaddr结构 二、封装 UdpSocket 一、预备知识 1.1 理解IP地址和端口号 众所周知,每台主机都有一个IP地址。而主机和主机之间通信,也需要依赖…

对比学习论文阅读:CoCLR算法笔记

标题:Self-supervised Co-training for Video Representation Learning 会议:NIPS2020 论文地址:https://dl.acm.org/doi/abs/10.5555/3495724.3496201 官方代码:https://www.robots.ox.ac.uk/~vgg/research/CoCLR/ 作者单位&…

软考算法-排序篇-上

数据排序 一:故事背景二:直接插入排序2.1 概念2.2 画图表示2.3 代码实现2.4 总结提升 三:希尔排序3.1 概念3.2 画图表示3.3 代码实现3.4 总结提升 四:直接选择排序4.1 概念4.2 画图表示4.3 代码实现4.4 总结提升 五:堆…

组播PIM协议

PIM(Protocol Independent Multicast)称为协议无关组播(组播分发树)。这里的协议无关指的是与单播路由协议无关,即PIM不需要维护专门的单播路由信息。作为组播路由解决方案,它直接利用单播路由表的路由信息…

LeetCode:142. 环形链表 II

🍎道阻且长,行则将至。🍓 🌻算法,不如说它是一种思考方式🍀 算法专栏: 👉🏻123 题解目录 一、🌱[142. 环形链表 II](https://leetcode.cn/problems/linked-l…