Docker部署实战

news2025/1/16 19:01:17

文章目录

  • Docker部署
    • 应用准备
    • 制作容器镜像
    • 启动容器
    • 上传镜像
    • docker exec
  • 数据卷(Volume)
    • 声明
    • 原理
    • 实践

Docker部署

应用准备

这一次,我们来用 Docker 部署一个用 Python 编写的 Web 应用。这个应用的代码部分(app.py)非常简单:

from flask import Flask
import socket
import os
 
app = Flask(__name__)
 
@app.route('/')
def hello():
    html = "<h3>Hello {name}!</h3>" \
           "<b>Hostname:</b> {hostname}<br/>"           
    return html.format(name=os.getenv("NAME", "world"), hostname=socket.gethostname())
    
if __name__ == "__main__":
    app.run(host='0.0.0.0', port=80)

在这段代码中,使用 Flask 框架启动了一个 Web 服务器,而它唯一的功能是:如果当前环境中有“NAME”这个环境变量,就把它打印在“Hello”后,否则就打印“Hello world”,最后再打印出当前环境的 hostname。

这个应用的依赖,则被定义在了同目录下的 requirements.txt 文件里,内容如下所示:

$ cat requirements.txt
Flask

制作容器镜像

而将这样一个应用容器化的第一步,是制作容器镜像。

不过,相较于之前介绍的制作 rootfs 的过程,Docker 为你提供了一种更便捷的方式,叫作 Dockerfile,如下所示。

# 使用官方提供的 Python 开发镜像作为基础镜像
FROM python:2.7-slim
 
# 将工作目录切换为 /app
WORKDIR /app
 
# 将当前目录下的所有内容复制到 /app 下
ADD . /app
 
# 使用 pip 命令安装这个应用所需要的依赖
RUN pip install --trusted-host pypi.python.org -r requirements.txt
 
# 允许外界访问容器的 80 端口
EXPOSE 80
 
# 设置环境变量
ENV NAME World
 
# 设置容器进程为:python app.py,即:这个 Python 应用的启动命令
CMD ["python", "app.py"]

通过这个文件的内容,你可以看到 Dockerfile 的设计思想,是使用一些标准的原语(即大写高亮的词语),描述我们所要构建的 Docker 镜像。并且这些原语都是按顺序处理的。

比如 FROM 原语,指定了“python:2.7-slim”这个官方维护的基础镜像,从而免去了安装 Python 等语言环境的操作。否则,这一段我们就得这么写了:

FROM ubuntu:latest
RUN apt-get update -yRUN apt-get install -y python-pip python-dev build-essential
...

其中,RUN 原语就是在容器里执行 shell 命令的意思。

而 WORKDIR,意思是在这一句之后,Dockerfile 后面的操作都以这一句指定的 /app 目录作为当前目录。

所以,到了最后的 CMD,意思是 Dockerfile 指定 python app.py 为这个容器的进程。这里,app.py 的实际路径是 /app/app.py。所以,CMD [“python”, “app.py”] 等价于 “docker run python app.py”。

另外,在使用 Dockerfile 时,你可能还会看到一个叫作 ENTRYPOINT 的原语。实际上,它和 CMD 都是 Docker 容器进程启动所必需的参数,完整执行格式是:“ENTRYPOINT CMD”。

但是,默认情况下,Docker 会为你提供一个隐含的 ENTRYPOINT,即:/bin/sh -c。所以,在不指定 ENTRYPOINT 时,比如在我们这个例子里,实际上运行在容器里的完整进程是:/bin/sh -c “python app.py”,即 CMD 的内容就是 ENTRYPOINT 的参数。

备注:基于以上原因,我们后面会统一称 Docker 容器的启动进程为 ENTRYPOINT,而不是 CMD。

需要注意的是,Dockerfile 里的原语并不都是指对容器内部的操作。就比如 ADD,它指的是把当前目录(即 Dockerfile 所在的目录)里的文件,复制到指定容器内的目录当中。

读懂这个 Dockerfile 之后,再把上述内容保存到当前目录里一个名叫“Dockerfile”的文件中:

$ ls
Dockerfile  app.py   requirements.txt

接下来,我就可以让 Docker 制作这个镜像了,在当前目录执行:

$ docker build -t helloworld .

其中,-t 的作用是给这个镜像加一个 Tag,即:起一个好听的名字。docker build 会自动加载当前目录下的 Dockerfile 文件,然后按照顺序,执行文件中的原语。而这个过程,实际上可以等同于 Docker 使用基础镜像启动了一个容器,然后在容器中依次执行 Dockerfile 中的原语。

需要注意的是,Dockerfile 中的每个原语执行后,都会生成一个对应的镜像层。即使原语本身并没有明显地修改文件的操作(比如,ENV 原语),它对应的层也会存在。只不过在外界看来,这个层是空的。

docker build 操作完成后,我可以通过 docker images 命令查看结果:

$ docker image ls
 
REPOSITORY            TAG                 IMAGE ID
helloworld         latest              653287cdf998

启动容器

接下来,使用这个镜像,通过 docker run 命令启动容器:

$ docker run -p 4000:80 helloworld

在这一句命令中,镜像名 helloworld 后面,我什么都不用写,因为在 Dockerfile 中已经指定了 CMD。否则,我就得把进程的启动命令加在后面:

$ docker run -p 4000:80 helloworld python app.py

容器启动之后,我可以使用 docker ps 命令看到:

$ docker ps
CONTAINER ID        IMAGE               COMMAND             CREATED
4ddf4638572d        helloworld       "python app.py"     10 seconds ago

同时,我已经通过 -p 4000:80 告诉了 Docker,请把容器内的 80 端口映射在宿主机的 4000 端口上。

这样做的目的是,只要访问宿主机的 4000 端口,我就可以看到容器里应用返回的结果:

$ curl http://localhost:4000
<h3>Hello World!</h3><b>Hostname:</b> 4ddf4638572d<br/>

否则,我就得先用 docker inspect 命令查看容器的 IP 地址,然后访问“http://< 容器 IP 地址 >:80”才可以看到容器内应用的返回。

至此,我已经使用容器完成了一个应用的开发与测试,如果现在想要把这个容器的镜像上传到 DockerHub 上分享给更多的人,我要怎么做呢?

上传镜像

为了能够上传镜像,首先需要注册一个 Docker Hub 账号,然后使用 docker login 命令登录。

接下来,要用 docker tag 命令给容器镜像起一个完整的名字:

$ docker tag helloworld geektime/helloworld:v1

注意:请将 “geektime” 替换成你自己的 Docker Hub 账户名称,比如 zhangsan/helloworld:v1

其中,geektime 是在 Docker Hub 上的用户名,它的“学名”叫镜像仓库(Repository);“/”后面的 helloworld 是这个镜像的名字,而“v1”则是给这个镜像分配的版本号。

然后,执行 docker push:

$ docker push geektime/helloworld:v1

这样,就可以把这个镜像上传到 Docker Hub 上了。

此外,还可以使用 docker commit 指令,把一个正在运行的容器,直接提交为一个镜像。一般来说,需要这么操作原因是:这个容器运行起来后,又在里面做了一些操作,并且要把操作结果保存到镜像里,比如:

$ docker exec -it 4ddf4638572d /bin/sh
# 在容器内部新建了一个文件
root@4ddf4638572d:/app# touch test.txt
root@4ddf4638572d:/app# exit
 
# 将这个新建的文件提交到镜像中保存
$ docker commit 4ddf4638572d geektime/helloworld:v2

这里使用了 docker exec 命令进入到了容器当中。在了解了 Linux Namespace 的隔离机制后,你应该会很自然地想到一个问题:docker exec 是怎么做到进入容器里的呢?

docker exec

实际上,Linux Namespace 创建的隔离空间虽然看不见摸不着,但一个进程的 Namespace 信息在宿主机上是确确实实存在的,并且是以一个文件的方式存在。

比如,通过如下指令,你可以看到当前正在运行的 Docker 容器的进程号(PID)是 25686:

$ docker inspect --format '{{ .State.Pid }}'  4ddf4638572d
25686

这时,你可以通过查看宿主机的 proc 文件,看到这个 25686 进程的所有 Namespace 对应的文件:

$ ls -l  /proc/25686/ns
total 0
lrwxrwxrwx 1 root root 0 Aug 13 14:05 cgroup -> cgroup:[4026531835]
lrwxrwxrwx 1 root root 0 Aug 13 14:05 ipc -> ipc:[4026532278]
lrwxrwxrwx 1 root root 0 Aug 13 14:05 mnt -> mnt:[4026532276]
lrwxrwxrwx 1 root root 0 Aug 13 14:05 net -> net:[4026532281]
lrwxrwxrwx 1 root root 0 Aug 13 14:05 pid -> pid:[4026532279]
lrwxrwxrwx 1 root root 0 Aug 13 14:05 pid_for_children -> pid:[4026532279]
lrwxrwxrwx 1 root root 0 Aug 13 14:05 user -> user:[4026531837]
lrwxrwxrwx 1 root root 0 Aug 13 14:05 uts -> uts:[4026532277]

可以看到,一个进程的每种 Linux Namespace,都在它对应的 /proc/[进程号]/ns 下有一个对应的虚拟文件,并且链接到一个真实的 Namespace 文件上。

有了这样一个可以“hold住”所有 Linux Namespace 的文件,我们就可以对 Namespace 做一些很有意义事情了,比如:加入到一个已经存在的 Namespace 当中。

这也就意味着:一个进程,可以选择加入到某个进程已有的 Namespace 当中,从而达到“进入”这个进程所在容器的目的,这正是 docker exec 的实现原理。

而这个操作所依赖的,乃是一个名叫 setns() 的 Linux 系统调用。它的调用方法,我可以用如下一段小程序为你说明:

#define _GNU_SOURCE
#include <fcntl.h>
#include <sched.h>
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
 
#define errExit(msg) do { perror(msg); exit(EXIT_FAILURE);} while (0)
 
int main(int argc, char *argv[]) {
    int fd;
    
    fd = open(argv[1], O_RDONLY);
    if (setns(fd, 0) == -1) {
        errExit("setns");
    }
    execvp(argv[2], &argv[2]); 
    errExit("execvp");
}

这段代码功能非常简单:它一共接收两个参数,第一个参数是 argv[1],即当前进程要加入的 Namespace 文件的路径,比如 /proc/25686/ns/net;而第二个参数,则是你要在这个 Namespace 里运行的进程,比如 /bin/bash。

这段代码的的核心操作,则是通过 open() 系统调用打开了指定的 Namespace 文件,并把这个文件的描述符 fd 交给 setns() 使用。在 setns() 执行后,当前进程就加入了这个文件对应的 Linux Namespace 当中了。

现在,你可以编译执行一下这个程序,加入到容器进程(PID=25686)的 Network Namespace 中:

$ gcc -o set_ns set_ns.c 
$ ./set_ns /proc/25686/ns/net /bin/bash 
$ ifconfig
eth0      Link encap:Ethernet  HWaddr 02:42:ac:11:00:02  
          inet addr:172.17.0.2  Bcast:0.0.0.0  Mask:255.255.0.0
          inet6 addr: fe80::42:acff:fe11:2/64 Scope:Link
          UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1
          RX packets:12 errors:0 dropped:0 overruns:0 frame:0
          TX packets:10 errors:0 dropped:0 overruns:0 carrier:0
	   collisions:0 txqueuelen:0 
          RX bytes:976 (976.0 B)  TX bytes:796 (796.0 B)
 
lo        Link encap:Local Loopback  
          inet addr:127.0.0.1  Mask:255.0.0.0
          inet6 addr: ::1/128 Scope:Host
          UP LOOPBACK RUNNING  MTU:65536  Metric:1
          RX packets:0 errors:0 dropped:0 overruns:0 frame:0
          TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
	  collisions:0 txqueuelen:1000 
          RX bytes:0 (0.0 B)  TX bytes:0 (0.0 B)

如上所示,当我们执行 ifconfig 命令查看网络设备时,我会发现能看到的网卡“变少”了:只有两个。而我的宿主机则至少有四个网卡。这是怎么回事呢?

实际上,在 setns() 之后我看到的这两个网卡,正是我在前面启动的 Docker 容器里的网卡。也就是说,我新创建的这个 /bin/bash 进程,由于加入了该容器进程(PID=25686)的 Network Namepace,它看到的网络设备与这个容器里是一样的,即:/bin/bash 进程的网络设备视图,也被修改了。

而一旦一个进程加入到了另一个 Namespace 当中,在宿主机的 Namespace 文件上,也会有所体现。

在宿主机上,你可以用 ps 指令找到这个 set_ns 程序执行的 /bin/bash 进程,其真实的 PID 是 28499:

# 在宿主机上
ps aux | grep /bin/bash
root     28499  0.0  0.0 19944  3612 pts/0    S    14:15   0:00 /bin/bash

这时,如果按照前面介绍过的方法,查看一下这个 PID=28499 的进程的 Namespace,你就会发现这样一个事实:

$ ls -l /proc/28499/ns/net
lrwxrwxrwx 1 root root 0 Aug 13 14:18 /proc/28499/ns/net -> net:[4026532281]
 
$ ls -l  /proc/25686/ns/net
lrwxrwxrwx 1 root root 0 Aug 13 14:05 /proc/25686/ns/net -> net:[4026532281]

在 /proc/[PID]/ns/net 目录下,这个 PID=28499 进程,与我们前面的 Docker 容器进程(PID=25686)指向的 Network Namespace 文件完全一样。这说明这两个进程,共享了这个名叫 net:[4026532281] 的 Network Namespace。

此外,Docker 还专门提供了一个参数,可以让你启动一个容器并“加入”到另一个容器的 Network Namespace 里,这个参数就是 -net,比如:

$ docker run -it --net container:4ddf4638572d busybox ifconfig

这样,我们新启动的这个容器,就会直接加入到 ID=4ddf4638572d 的容器,也就是我们前面的创建的 Python 应用容器(PID=25686)的 Network Namespace 中。所以,这里 ifconfig 返回的网卡信息,跟我前面那个小程序返回的结果一模一样,你也可以尝试一下。

而如果我指定 -net=host,就意味着这个容器不会为进程启用 Network Namespace。这就意味着,这个容器拆除了 Network Namespace 的“隔离墙”,所以,它会和宿主机上的其他普通进程一样,直接共享宿主机的网络栈。这就为容器直接操作和使用宿主机网络提供了一个渠道。

转了一个大圈子,其实是为了详细解读 docker exec 这个操作背后 Linux Namespace 更具体的工作原理。

这种通过操作系统进程相关的知识,逐步剖析 Docker 容器的方法,是理解容器的一个关键思路,一定要掌握。

现在,我们再一起回到前面提交镜像的操作 docker commit 上来吧。

docker commit,实际上就是在容器运行起来后,把最上层的“可读写层”,加上原先容器镜像的只读层,打包组成了一个新的镜像。当然,下面这些只读层在宿主机上是共享的,不会占用额外的空间。

而由于使用了联合文件系统,你在容器里对镜像 rootfs 所做的任何修改,都会被操作系统先复制到这个可读写层,然后再修改。这就是所谓的:Copy-on-Write

而正如前所说,Init 层的存在,就是为了避免你执行 docker commit 时,把 Docker 自己对 /etc/hosts 等文件做的修改,也一起提交掉。

有了新的镜像,我们就可以把它推送到 Docker Hub 上了:

$ docker push geektime/helloworld:v2

数据卷(Volume)

前面我已经介绍过,容器技术使用了 rootfs 机制和 Mount Namespace,构建出了一个同宿主机完全隔离开的文件系统环境。这时候,我们就需要考虑这样两个问题:

  1. 容器里进程新建的文件,怎么才能让宿主机获取到?
  2. 宿主机上的文件和目录,怎么才能让容器里的进程访问到?

这正是 Docker Volume 要解决的问题:Volume 机制,允许你将宿主机上指定的目录或者文件,挂载到容器里面进行读取和修改操作

声明

在 Docker 项目里,它支持两种 Volume 声明方式,可以把宿主机目录挂载进容器的 /test 目录当中:

$ docker run -v /test ...
$ docker run -v /home:/test ...

而这两种声明方式的本质,实际上是相同的:都是把一个宿主机的目录挂载进了容器的 /test 目录。

只不过,在第一种情况下,由于你并没有显示声明宿主机目录,那么 Docker 就会默认在宿主机上创建一个临时目录 /var/lib/docker/volumes/[VOLUME_ID]/_data,然后把它挂载到容器的 /test 目录上。而在第二种情况下,Docker 就直接把宿主机的 /home 目录挂载到容器的 /test 目录上。

原理

那么,Docker 又是如何做到把一个宿主机上的目录或者文件,挂载到容器里面去呢?难道又是 Mount Namespace 的黑科技吗?

实际上,并不需要这么麻烦。

在上篇文章我们知道,当容器进程被创建之后,尽管开启了 Mount Namespace,但是在它执行 chroot(或者 pivot_root)之前,容器进程一直可以看到宿主机上的整个文件系统。

而宿主机上的文件系统,也自然包括了我们要使用的容器镜像。这个镜像的各个层,保存在 /var/lib/docker/aufs/diff 目录下,在容器进程启动后,它们会被联合挂载在 /var/lib/docker/aufs/mnt/ 目录中,这样容器所需的 rootfs 就准备好了。

所以,我们只需要在 rootfs 准备好之后,在执行 chroot 之前,把 Volume 指定的宿主机目录(比如 /home 目录),挂载到指定的容器目录(比如 /test 目录)在宿主机上对应的目录(即 /var/lib/docker/aufs/mnt/[可读写层 ID]/test)上,这个 Volume 的挂载工作就完成了。

更重要的是,由于执行这个挂载操作时,“容器进程”已经创建了,也就意味着此时 Mount Namespace 已经开启了。所以,这个挂载事件只在这个容器里可见。你在宿主机上,是看不见容器内部的这个挂载点的。这就保证了容器的隔离性不会被 Volume 打破。

注意:这里提到的 " 容器进程 ",是 Docker 创建的一个容器初始化进程(dockerinit),而不是应用进程(ENTRYPOINT + CMD)。dockerinit 会负责完成根目录的准备、挂载设备和目录、配置 hostname 等一系列需要在容器内进行的初始化操作。最后,它通过 execv() 系统调用,让应用进程取代自己,成为容器里的 PID=1 的进程。

而这里要使用到的挂载技术,就是 Linux 的绑定挂载(bind mount)机制。它的主要作用就是,允许你将一个目录或者文件,而不是整个设备,挂载到一个指定的目录上。并且,这时你在该挂载点上进行的任何操作,只是发生在被挂载的目录或者文件上,而原挂载点的内容则会被隐藏起来且不受影响。

其实,如果你了解 Linux 内核的话,就会明白,绑定挂载实际上是一个 inode 替换的过程。在 Linux 操作系统中,inode 可以理解为存放文件内容的“对象”,而 dentry,也叫目录项,就是访问这个 inode 所使用的“指针”。
图片
正如上图所示,mount --bind /home /test,会将 /home 挂载到 /test 上。其实相当于将 /test 的 dentry,重定向到了 /home 的 inode。这样当我们修改 /test 目录时,实际修改的是 /home 目录的 inode。这也就是为何,一旦执行 umount 命令,/test 目录原先的内容就会恢复:因为修改真正发生在的,是 /home 目录里。

所以,在一个正确的时机,进行一次绑定挂载,Docker 就可以成功地将一个宿主机上的目录或文件,不动声色地挂载到容器中。

这样,进程在容器里对这个 /test 目录进行的所有操作,都实际发生在宿主机的对应目录(比如,/home,或者 /var/lib/docker/volumes/[VOLUME_ID]/_data)里,而不会影响容器镜像的内容。

那么,这个 /test 目录里的内容,既然挂载在容器 rootfs 的可读写层,它会不会被 docker commit 提交掉呢?

也不会。

这个原因其实我们前面已经提到过。容器的镜像操作,比如 docker commit,都是发生在宿主机空间的。而由于 Mount Namespace 的隔离作用,宿主机并不知道这个绑定挂载的存在。所以,在宿主机看来,容器中可读写层的 /test 目录(/var/lib/docker/aufs/mnt/[可读写层 ID]/test),始终是空的。

不过,由于 Docker 一开始还是要创建 /test 这个目录作为挂载点,所以执行了 docker commit 之后,你会发现新产生的镜像里,会多出来一个空的 /test 目录。毕竟,新建目录操作,又不是挂载操作,Mount Namespace 对它可起不到“障眼法”的作用。

实践

结合以上的讲解,我们现在来亲自验证一下:

首先,启动一个 helloworld 容器,给它声明一个 Volume,挂载在容器里的 /test 目录上:

$ docker run -d -v /test helloworld
cf53b766fa6f

容器启动之后,我们来查看一下这个 Volume 的 ID:

$ docker volume ls
DRIVER              VOLUME NAME
local               cb1c2f7221fa9b0971cc35f68aa1034824755ac44a034c0c0a1dd318838d3a6d

然后,使用这个 ID,可以找到它在 Docker 工作目录下的 volumes 路径:

$ ls /var/lib/docker/volumes/cb1c2f7221fa/_data/

这个 _data 文件夹,就是这个容器的 Volume 在宿主机上对应的临时目录了。

接下来,我们在容器的 Volume 里,添加一个文件 text.txt:

$ docker exec -it cf53b766fa6f /bin/sh
cd test/
touch text.txt

这时,我们再回到宿主机,就会发现 text.txt 已经出现在了宿主机上对应的临时目录里:

$ ls /var/lib/docker/volumes/cb1c2f7221fa/_data/
text.txt

可是,如果你在宿主机上查看该容器的可读写层,虽然可以看到这个 /test 目录,但其内容是空的:

$ ls /var/lib/docker/aufs/mnt/6780d0778b8a/test

可以确认,容器 Volume 里的信息,并不会被 docker commit 提交掉;但这个挂载点目录 /test 本身,则会出现在新的镜像当中。

以上内容,就是 Docker Volume 的核心原理了。


笔记来源于:极客时间《深入剖析Kubernetes》

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/378884.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【同步、共享和内容协作软件】上海道宁与​ownCloud让您的团队随时随地在任何设备上轻松处理数据

ownCloud是 一款开源文件同步、共享和 内容协作软件 可让团队随时随地 在任何设备上轻松处理数据 ownCloud开发并提供 用于内容协作的开源软件 使团队能够轻松地无缝 共享和处理文件 而无需考虑设备或位置 开发商介绍 ownCloud成立于2010年&#xff0c;是一个托管和同…

设计模式-笔记

文章目录七大原则单例模式桥模式 bridge观察者模式 observer责任链模式 Chain of Responsibility命令模式 Command迭代器模式 Iterator中介者模式 Mediator享元模式 Flyweight Pattern组合模式 composite装饰模式 Decorator外观模式 Facade简单工厂模式工厂方法模式工厂抽象模式…

Postgresql中的unlogged table

在PG中&#xff0c;有一种表的类型为unlogged table&#xff0c;名如其字&#xff0c;该种类型的表不会写入wal日志中&#xff0c;所以在写入的速度上比普通的堆表快很多&#xff0c;但是该表在数据库崩溃的时候&#xff0c;会被truncate,数据会丢失&#xff0c;而且该表也不支…

Leetcode21. 合并两个有序链表

一、题目描述&#xff1a; 将两个升序链表合并为一个新的 升序 链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。 示例 1&#xff1a; 输入&#xff1a;l1 [1,2,4], l2 [1,3,4]输出&#xff1a;[1,1,2,3,4,4] 示例 2&#xff1a; 输入&#xff1a;l1 [], l2…

Java程序开发中如何使用lntelliJ IDEA?

完成了IDEA的安装与启动&#xff0c;下面使用IDEA创建一个Java程序&#xff0c;实现在控制台上打印HelloWorld!的功能&#xff0c;具体步骤如下。 1.创建Java项目 进入New Project界面后&#xff0c;单击New Project选项按钮创建新项目&#xff0c;弹出New Project对话框&…

【k8s】Kubernetes的学习(1.k8s概念和架构)

目录 1.首先要知道&#xff0c;Kubernetes为什么简称为k8s? 2.Kubernetes概述 2.1 kubernetes基本介绍 2.2 kubernetes的特性 2.3 kubernetes集群架构组件 2.3.1 Master (主控节点) 2.3.2 node (工作节点) 2.4 k8s核心概念 2.4.1 Pod 2.4.2 controller 2.4.3 Se…

操作系统权限提升(十九)之Linux提权-SUID提权

系列文章 操作系统权限提升(十八)之Linux提权-内核提权 SUID提权 SUID介绍 SUID是一种特殊权限&#xff0c;设置了suid的程序文件&#xff0c;在用户执行该程序时&#xff0c;用户的权限是该程序文件属主的权限&#xff0c;例如程序文件的属主是root&#xff0c;那么执行该…

redux-saga

redux-saga 官网&#xff1a;About | Redux-Saga 中文网&#xff1a;自述 Redux-Saga redux-saga 是一个用于管理 异步获取数据(副作用) 的redux中间件&#xff1b;它的目标是让副作用管理更容易&#xff0c;执行更高效&#xff0c;测试更简单&#xff0c;处理故障时更容易… …

C#:Krypton控件使用方法详解(第十讲) ——kryptonColorButton

今天介绍的Krypton控件中的kryptonColorButton&#xff0c;下面介绍这个控件的外观属性&#xff1a;Cursor属性&#xff1a;表示鼠标移动过该控件的时候&#xff0c;鼠标显示的形状。属性值如下图所示&#xff1a;EmptyBorderColor属性&#xff1a;表示当所选颜色为空时&#x…

七、JUC并发工具

文章目录JUC并发工具CountDownLatch应用&源码分析CountDownLatch介绍CountDownLatch应用CountDownLatch源码分析有参构造await方法countDown方法CyclicBarrier应用&源码分析CyclicBarrier介绍CyclicBarrier应用CyclicBarrier源码分析CyclicBarrier的核心属性CyclicBarr…

echarts实现知识图谱,生产项目

echarts实现知识图谱&#xff0c;生产项目内容简介效果演示代码逻辑结束语内容简介 在实际生产项目中&#xff0c;需要对后端知识数据进行展示。需求如下&#xff1a; 点击节点可以展示与此节点相关的节点信息右键点击节点可以对节点的信息进行修改悬浮在节点上可以查看节点的…

通用人工智能(AGI):人工智能的下一个阶段

除了人工智能(AI)的改进和新应用之外&#xff0c;大多数人都认为&#xff0c;当通用人工智能(AGI)出现时&#xff0c;人工智能的下一次飞跃将发生。我们将AGI宽泛地定义为机器或计算机程序理解或学习人类可以完成的任何智力任务的假设能力。然而&#xff0c;对于何时以及如何实…

系统性能测试指标

性能测试的目的 1.评估系统的能力&#xff0c;测试中得到的负荷和响应时间数据可以被用于验证所计划的模型的能力&#xff0c;并帮助作出决策。 2.识别体系中的弱点&#xff1a;受控的负荷可以被增加到一个极端的水平&#xff0c;并突破它&#xff0c;从而修复体系的瓶颈或薄…

leetcode: Swapping Nodes in a Linked List

leetcode: Swapping Nodes in a Linked List1. 题目描述2. 题目解答3. 总结1. 题目描述 You are given the head of a linked list, and an integer k.Return the head of the linked list after swapping the values of the kth node from the beginning and the kth node f…

ECMAScript 详解

ECMAScript 历史我们首先来看 ECMA 是什么。ECMA&#xff0c;是欧洲计算机制造商协会&#xff08;European Computer Manufacturers Association&#xff09;的简称&#xff0c;是一家国际性会员制度的信息和电信标准组织。1994 年之后&#xff0c;由于组织的标准牵涉到很多其他…

【Leetcode 剑指Offer】第 6 天 搜索与回溯算法(简单)

搜索与回溯剑指 Offer 32 - I. 从上到下打印二叉树层序遍历 广搜 BFScollections双端队列 deque剑指 Offer 32 - II. 从上到下打印二叉树 II剑指 Offer 32 - III. 从上到下打印二叉树 III剑指 Offer 32 - I. 从上到下打印二叉树 题;从上到下打印出二叉树的每个节点&#xff0c…

单通道说话人语音分离——DPRNN(Dual-Path Recurrent Neural Network)

参考文献&#xff1a;《DUAL-PATH RNN: EFFICIENT LONG SEQUENCE MODELING FOR TIME-DOMAIN SINGLE-CHANNEL SPEECH SEPARATION》 DPRNN网络是Con-Tasnet的改进网络 Con-Tasnet介绍详情请看上一篇文章 单通道说话人语音分离——Conv-TasNet(Convolutional Time-domain audio…

应用程序性能优化方案,web服务五级缓存优化,服务器性能优化...

winfrom 全局异常捕获WPF 全局异常捕获Asp.Net全局异常捕获MVC 全局异常捕获AspNetNetCore 全局异常捕获一级缓存html/css/js 前端缓存二级缓存Asp.Net MVC AspNetCore 客户端缓存设置三级缓存服务端缓存四级redis 数据库缓存服务端缓存五级sqlserver 数据库缓存设置分布式缓存…

2023年湖北建设厅资料员证怎么考需要什么条件?启程别

2023年湖北建设厅资料员证怎么考需要什么条件&#xff1f;启程别 湖北资料员目前已经开始组织考试了&#xff0c;各位想要考资料员的现在可以开始准备报考相关准备工作了。资料员怎么考需要什么条件&#xff1f;启程别告诉你 建设厅资料员证怎么考 网报&#xff1a;七大员全国…

ARM学习(十八)jinkozone调试问题总结

笔者来聊聊ARM的函数的调用规则 1、ARM函数调用规则介绍首先介绍几个术语&#xff0c; AAPCS&#xff1a;Procedure Call Standard for the ARM Architecture APCS&#xff1a;ARM Procedure Call Standard TPCS&#xff1a;Thumb Procedure Call Standard ATPCS&#xff1a;AR…