来源:力扣(LeetCode)
描述:
一所学校里有一些班级,每个班级里有一些学生,现在每个班都会进行一场期末考试。给你一个二维数组 classes
,其中 classes[i] = [passi, totali]
,表示你提前知道了第 i
个班级总共有 totali 个学生,其中只有 passi 个学生可以通过考试。
给你一个整数 extraStudents
,表示额外有 extraStudents
个聪明的学生,他们 一定 能通过任何班级的期末考。你需要给这 extraStudents
个学生每人都安排一个班级,使得 所有 班级的 平均 通过率 最大 。
一个班级的 通过率 等于这个班级通过考试的学生人数除以这个班级的总人数。平均通过率 是所有班级的通过率之和除以班级数目。
请你返回在安排这 extraStudents
个学生去对应班级后的 最大 平均通过率。与标准答案误差范围在 10-5 以内的结果都会视为正确结果。
示例 1:
输入:classes = [[1,2],[3,5],[2,2]], extraStudents = 2
输出:0.78333
解释:你可以将额外的两个学生都安排到第一个班级,平均通过率为 (3/4 + 3/5 + 2/2) / 3 = 0.78333 。
示例 2:
输入:classes = [[2,4],[3,9],[4,5],[2,10]], extraStudents = 4
输出:0.53485
提示:
- 1 <= classes.length <= 105
- classes[i].length == 2
- 1 <= passi <= totali <= 105
- 1 <= extraStudents <= 105
方法:优先队列
思路与算法
由于班级总数不会变化,因此题目所求「最大化平均通过率」等价于「最大化总通过率」。设某个班级的人数为 total,其中通过考试的人数为 pass,那么给这个班级安排一个额外通过考试的学生,其通过率会增加:
我们会优先选择通过率增加量最大的班级,这样做的正确性在于给同一个班级不断地增加安排的学生数量时,其增加的通过率是单调递减的,即:
因此当以下条件满足时,班级 j 比班级 i 优先级更大:
化简后可得:
我们按照上述比较规则将每个班级放入优先队列中,进行 extraStudents 次操作。每一次操作,我们取出优先队列的堆顶元素,令其 pass 和 total 分别加 1,然后再放回优先队列。
最后我们遍历优先队列的每一个班级,计算其平均通过率即可得到答案。
代码:
class Solution {
public:
struct Ratio {
int pass, total;
bool operator < (const Ratio& oth) const {
return (long long) (oth.total + 1) * oth.total * (total - pass) < (long long) (total + 1) * total * (oth.total - oth.pass);
}
};
double maxAverageRatio(vector<vector<int>>& classes, int extraStudents) {
priority_queue<Ratio> q;
for (auto &c : classes) {
q.push({c[0], c[1]});
}
for (int i = 0; i < extraStudents; i++) {
auto [pass, total] = q.top();
q.pop();
q.push({pass + 1, total + 1});
}
double res = 0;
for (int i = 0; i < classes.size(); i++) {
auto [pass, total] = q.top();
q.pop();
res += 1.0 * pass / total;
}
return res / classes.size();
}
};
执行用时:680 ms, 在所有 C++ 提交中击败了94.29%的用户
内存消耗:85.9 MB, 在所有 C++ 提交中击败了79.05%的用户
复杂度分析
时间复杂度:O((n+m)logn) 或 O(n+mlogn),其中 n 为classes 的长度,m 等于 extraStudents。每次从优先队列中取出或者放入元素的时间复杂度为 O(logn),共需操作 O(n+m) 次,故总复杂度为 O((n+m)logn)。堆化写法的时间复杂度为 O(n+mlogn)。
空间复杂度:O(n) 或 O(1)。使用优先队列需要用到 O(n) 的空间,但若直接在 classes 上原地堆化,则可以做到 (1) 额外空间。
author:LeetCode-Solution