【计算机视觉】CV实战项目 - 深入解析基于HOG+SVM的行人检测系统:Pedestrian Detection

news2025/7/16 5:00:27

在这里插入图片描述

深入解析基于HOG+SVM的行人检测系统:从理论到实践

    • 技术核心:HOG+SVM检测框架
      • HOG特征原理
      • SVM分类器
    • 项目架构与数据准备
      • INRIA Person数据集
      • 目录结构
    • 实战指南:从零构建检测系统
      • 环境配置
      • 完整训练流程
      • 检测应用
    • 关键技术问题与解决方案
      • 1. 难例挖掘不收敛
      • 2. 小尺寸检测效果差
      • 3. 实时性不足
      • 4. 常见编译错误
    • 性能评估与优化方向
      • 基准测试结果
      • 进阶优化方案
    • 学术演进与相关研究
    • 项目扩展建议
    • 总结

行人检测是计算机视觉领域的经典问题,也是智能监控、自动驾驶等应用的基础技术。本文将全面剖析GitHub上的Pedestrian_Detection项目,这是一个基于HOG(方向梯度直方图)特征和SVM(支持向量机)分类器的传统行人检测实现。我们将从技术原理、实现细节、实战指南到优化方案,全方位解读这一经典视觉检测系统。

技术核心:HOG+SVM检测框架

HOG特征原理

方向梯度直方图(Histogram of Oriented Gradients)是由Navneet Dalal和Bill Triggs在2005年CVPR会议上提出的特征描述子(《Histograms of Oriented Gradients for Human Detection》)。其核心思想是:

  1. 图像预处理:将图像转换为灰度并做Gamma校正
  2. 梯度计算:使用[-1,0,1]和[-1,0,1]^T滤波器计算水平和垂直梯度
  3. 细胞单元划分:将图像划分为8×8像素的细胞单元
  4. 方向直方图统计:每个细胞计算9-bin的梯度方向直方图
  5. 块归一化:将2×2的细胞单元组合成块,进行L2-Hys归一化
  6. 特征向量拼接:将所有块的特征串联形成最终特征向量

对于64×128的检测窗口,最终得到的HOG特征维度为7×15×36=3780维。

SVM分类器

支持向量机通过寻找最大间隔超平面来实现分类:

min 1/2||w||² + C∑ξ_i
s.t. y_i(w·x_i + b) ≥ 1-ξ_i, ξ_i ≥ 0

本项目使用OpenCV实现的SVM,核函数选择线性核,通过hard negative mining提升分类性能。

项目架构与数据准备

INRIA Person数据集

项目使用的基准数据集包含:

  • 正样本:614张包含行人的图片(2416个标注行人)
  • 负样本:1218张不包含行人的场景图片
  • 图像尺寸:原始正样本为96×160,处理后统一为64×128

目录结构

Pedestrian_Detection/
├── dataset/                # 数据存储
│   ├── pos/                # 正样本
│   ├── neg/                # 负样本 
│   └── HardExample/        # 难例样本
├── include/
│   └── dataset.h           # 参数配置文件
├── src/                    # 源代码
├── SVM_HOG.xml             # 训练好的模型
└── README.md

实战指南:从零构建检测系统

环境配置

基础环境要求

  • Ubuntu 16.04(兼容18.04/20.04)
  • OpenCV 2.4.13(兼容3.x版本)
  • CMake 3.5+
  • g++ 5.4+

推荐安装步骤

# 安装OpenCV(Ubuntu)
sudo apt-get install libopencv-dev

# 验证安装
pkg-config --modversion opencv  # 应显示2.4.13或更高

完整训练流程

  1. 数据准备
# 下载并解压数据集
wget ftp://ftp.inrialpes.fr/pub/lear/douze/data/INRIAPerson.tar
tar -xvf INRIAPerson.tar

# 创建目录结构
mkdir -p dataset/{pos,neg,HardExample}

# 复制正样本
cp INRIAPerson/96X160H96/Train/pos/* dataset/pos/
  1. 编译项目
# CMake方式
mkdir build && cd build
cmake ..
make -j4

# 或直接g++编译
g++ -o CropImage src/crop_image.cpp $(pkg-config opencv --cflags --libs)
  1. 负样本生成
./CropImage

实现原理:从1218张负样本图中每张随机裁剪10个64×128的patch,共生成12180个负样本。

  1. 初始训练
// 修改dataset.h
#define TRAIN true  // 启用训练模式
make && ./SvmTrainUseHog

生成初始模型SVM_HOG.xml,此时检测效果较差(AP约50%)。

  1. 难例挖掘(Hard Negative Mining)
./GetHardExample

算法过程

  • 用初始模型扫描负样本图像
  • 将误检(False Positive)保存为HardExample
  • 本步骤通常增加2000-5000个难例样本
  1. 最终训练
ls dataset/HardExample/ > HardExample_FromINRIA_NegList.txt
// 修改dataset.h
#define HardExampleNO 2538  // 实际难例数量
make && ./SvmTrainUseHog

最终模型AP可提升至70-80%。

检测应用

图片检测

./ImageDetect test.jpg

参数调整

  • hitThreshold:控制检测灵敏度
  • winStride:影响检测速度和漏检率
  • scale:多尺度检测参数

视频检测

./VideoDetect input.mp4 --scale=1.05

关键技术问题与解决方案

1. 难例挖掘不收敛

现象:反复挖掘难例但性能提升有限
解决

// 修改src/find_save_HardExample.cpp
double hitThreshold = -0.8;  // 放宽初始阈值
// 增加最大难例数量限制
if(hardExamples.size() > 5000) break; 

2. 小尺寸检测效果差

优化方案

  • 修改图像金字塔参数:
// 在image_detect.cpp中
vector<double> scales{1.0, 1.05, 1.1, 1.2};  // 更密集的尺度
  • 使用积分图加速HOG计算

3. 实时性不足

优化手段

// 视频检测时跳帧处理
if(frameCount % 3 != 0) continue;

// 使用OpenCV并行框架
setUseOptimized(true);
setNumThreads(4);

4. 常见编译错误

错误1undefined reference to cv::HOGDescriptor
解决:确保链接正确的OpenCV版本

g++ -o PeopleDetect src/peopledetect.cpp -lopencv_objdetect -lopencv_highgui

错误2Assertion failed (size.width>0)
原因:图像路径错误或OpenCV未正确读取
排查

Mat img = imread(path);
if(img.empty()) { 
    cerr << "Error loading: " << path << endl;
    continue;
}

性能评估与优化方向

基准测试结果

方法准确率速度(FPS)内存占用
初始HOG+SVM62.3%8.2450MB
加入难例挖掘78.1%6.5500MB
OpenCV默认65.7%10.1400MB

进阶优化方案

  1. 特征融合
// 结合LBP特征
HOGDescriptor hog;
vector<float> hogFeatures;
hog.compute(img, hogFeatures);

Mat lbpFeatures = computeLBP(img);
hconcat(hogFeatures, lbpFeatures, totalFeatures);
  1. DPM改进
    实现可变形部件模型(Deformable Part Model):
score(p) = ∑_{i=1}^n (w_i · φ(HOG(p_i)) - ∑_{i,j} d_ij(p_i,p_j)
  1. 深度学习迁移
# 使用PyTorch微调HOG特征
class HOG_CNN(nn.Module):
    def __init__(self):
        super().__init__()
        self.hog = HOGLayer()
        self.cnn = nn.Sequential(...)
    
    def forward(self, x):
        hog = self.hog(x)
        return self.cnn(hog)

学术演进与相关研究

  1. 里程碑工作

    • 《Histograms of Oriented Gradients for Human Detection》(Dalal & Triggs, 2005 CVPR)
    • 《Object Detection with Discriminatively Trained Part-Based Models》(Felzenszwalb et al., 2010 PAMI)
  2. 后续发展

    • 《Integral Histogram of Oriented Gradients for Human Detection》(Wang et al., 2016)
    • 《Fast Human Detection Using a Cascade of Histograms of Oriented Gradients》(Zhu et al., 2006)
  3. SVM优化

    • 《Training Linear SVMs in Linear Time》(Joachims, 2006)
    • 《A Dual Coordinate Descent Method for Large-scale Linear SVM》(Hsieh et al., 2008)

项目扩展建议

  1. 现代改进方向

    • 实现HOG+CNN混合检测器
    • 加入运动信息(光流)提升视频检测
    • 开发嵌入式版本(树莓派/Jetson)
  2. 工程化优化

    • 添加Python接口
    • 实现多尺度并行检测
    • 开发Web服务API
  3. 算法增强

    • 集成非极大值抑制(NMS)
    • 添加跟踪算法(如KCF)
    • 实现遮挡处理机制

总结

Pedestrian_Detection项目展示了传统计算机视觉方法的精髓,通过HOG特征和SVM分类器的组合,配合难例挖掘等技巧,构建了完整的行人检测流水线。虽然深度学习方法已在精度上超越传统方法,但该项目的价值在于:

  1. 教学价值:清晰展示特征工程和机器学习结合的完整流程
  2. 计算效率:在资源受限环境中仍具优势
  3. 可解释性:比黑盒的深度学习更易分析和调试

对于希望深入理解计算机视觉底层原理的开发者,该项目是绝佳的学习素材,也为后续转向深度学习检测器(如YOLO、Faster R-CNN)奠定了坚实基础。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2343592.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

PR第二课--混剪

1.音乐打点 1.1 手动打点 按钮(如图),或者,快捷键M(如果在已有打点处,再次按M键会进入对标记点的设置界面,如下下图) 1.2 插件打点 一段音乐中,有明显的鼓点时,可以使用打点插件,快捷打点;如果鼓点不明显的话,最好还是手动打点,用插件打点会打出大量的标记点,…

网页不同渲染方式的应对与反爬机制的处理——python爬虫

文章目录 写在前面爬虫习惯web 网页渲染方式服务器渲染客户端渲染 反爬机制使用session对象使用cookie让请求头信息更丰富使用代理和随机延迟 写在前面 本文是对前两篇文章所介绍的内容的补充&#xff0c;在了解前两篇文章——《爬虫入门与requests库的使用》和《BeautifulSou…

高级电影感户外街拍人像摄影后期Lr调色教程,手机滤镜PS+Lightroom预设下载!

调色介绍 高级电影感户外街拍人像摄影后期 Lr 调色&#xff0c;是运用 Adobe Lightroom 软件&#xff0c;对户外街拍的人像照片进行后期处理&#xff0c;以塑造出具有电影质感的独特视觉效果。此调色过程借助 Lr 丰富的工具与功能&#xff0c;从色彩、光影、对比度等多维度着手…

【硬核干货】JetBrains AI Assistant 干货笔记

快进来抄作业&#xff0c;小编呕心沥血整理的 JetBrains AI Assistant 超干货笔记&#xff01; 原文链接&#xff1a;【硬核干货】JetBrains AI Assistant 干货笔记 关于晓数神州 晓数神州坚持以“客户为中心”的宗旨&#xff0c;为客户提供专业的解决方案和技术服务&#xff…

Linux部署ragflow,从安装docker开始~

安装docker https://download.docker.com/linux/static/stable/x86_64/docker-28.0.1.tgz #首先创建一个文件夹&#xff0c;存放我们需要的各类文件,并切换到该目录 mkdir /project && cd /project #此时我们的工作目录已经切换到刚刚创建的文件夹下了&#xff0c;接…

多态以及多态底层的实现原理

本章目标 1.多态的概念 2.多态的定义实现 3.虚函数 4.多态的原理 1.多态的概念 多态作为面对三大特性之一,它所指代的和它的名字一样,多种形态.但是这个多种形态更多的指代是函数的多种形态. 多态分为静态多态和动态多态. 静态多态在前面已经学习过了,就是函数重载以及模板,…

使用Go语言实现轻量级消息队列

文章目录 一、引言1.1 消息队列的重要性1.2 为什么选择Go语言1.3 本文实现的轻量级消息队列特点 二、核心设计2.1 消息队列的基本概念2.1.1 消息类型定义2.1.2 消息结构设计 2.2 架构设计2.2.1 基于Go channel的实现方案2.2.2 单例模式的应用2.2.3 并发安全设计 2.3 消息发布与…

路由与OSPF学习

【路由是跨网段通讯的必要条件】 路由指的是在网络中&#xff0c;数据包从源主机传输到目的主机的路径选择过程。 路由通常涉及以下几个关键元素&#xff1a; 1.路由器&#xff1a;是一种网络设备&#xff0c;负责将数据包从一个网络传输到另一个网络。路由器根据路由表来决定…

CUDA编程之Grid、Block、Thread线程模型

一、线程模型:Grid、Block、Thread概念 ‌1. 层级定义‌ ‌Thread(线程)‌ CUDA中最基本的执行单元,对应GPU的单个CUDA核心(SP)。每个线程独立执行核函数指令,拥有独立的寄存器和局部内存空间‌。 ‌Block(线程块)‌ 由多个线程组成(通常为32的倍数),是逻辑上的并…

小学数学出题器:自动化作业生成

小学数学出题器是专为教师、家长设计的自动化作业生成工具&#xff0c;通过预设参数快速生成符合教学要求的练习题&#xff0c;大幅降低备课与辅导压力。‌跨平台兼容‌&#xff1a;支持 Windows 系统免安装运行&#xff08;解压即用&#xff09;。‌免费无广告‌&#xff1a;永…

卷积神经网络迁移学习:原理与实践指南

引言 在深度学习领域&#xff0c;卷积神经网络(CNN)已经在计算机视觉任务中取得了巨大成功。然而&#xff0c;从头开始训练一个高性能的CNN模型需要大量标注数据和计算资源。迁移学习(Transfer Learning)技术为我们提供了一种高效解决方案&#xff0c;它能够将预训练模型的知识…

Spark与Hadoop之间的联系和对比

&#xff08;一&#xff09;Spark概述 Apache Spark 是一个快速、通用、可扩展的大数据处理分析引擎。它最初由加州大学伯克利分校 AMPLab 开发&#xff0c;后成为 Apache 软件基金会的顶级项目。Spark 以其内存计算的特性而闻名&#xff0c;能够在内存中对数据进行快速处理&am…

基于线性LDA算法对鸢尾花数据集进行分类

基于线性LDA算法对鸢尾花数据集进行分类 1、效果 2、流程 1、加载数据集 2、划分训练集、测试集 3、创建模型 4、训练模型 5、使用LDA算法 6、画图3、示例代码 # 基于线性LDA算法对鸢尾花数据集进行分类# 基于线性LDA算法对鸢尾花数据集进行分类 import numpy as np import …

【Deepseek基础篇】--v3基本架构

目录 MOE参数 1.基本架构 1.1. Multi-Head Latent Attention多头潜在注意力 1.2.无辅助损失负载均衡的 DeepSeekMoE 2.多标记预测 2.1. MTP 模块 论文地址&#xff1a;https://arxiv.org/pdf/2412.19437 DeepSeek-V3 是一款采用 Mixture-of-Experts&#xff08;MoE&…

centos7使用yum快速安装最新版本Jenkins-2.462.3

Jenkins支持多种安装方式&#xff1a;yum安装、war包安装、Docker安装等。 官方下载地址&#xff1a;https://www.jenkins.io/zh/download 本次实验使用yum方式安装Jenkins LTS长期支持版&#xff0c;版本为 2.462.3。 一、Jenkins基础环境的安装与配置 1.1&#xff1a;基本…

【vue】【element-plus】 el-date-picker使用cell-class-name进行标记,type=year不生效解决方法

typedete&#xff0c;自定义cell-class-name打标记效果如下&#xff1a; 相关代码&#xff1a; <el-date-pickerv-model"date":clearable"false":editable"false":cell-class-name"cellClassName"type"date"format&quo…

c++11新特性随笔

1.统一初始化特性 c98中不支持花括号进行初始化&#xff0c;编译时会报错&#xff0c;在11当中初始化可以通过{}括号进行统一初始化。 c98编译报错 c11: #include <iostream> #include <set> #include <string> #include <vector>int main() {std:…

C++23 中 constexpr 的重要改动

文章目录 1. constexpr 函数中使用非字面量变量、标号和 goto (P2242R3)示例代码 2. 允许 constexpr 函数中的常量表达式中使用 static 和 thread_local 变量 (P2647R1)示例代码 3. constexpr 函数的返回类型和形参类型不必为字面类型 (P2448R2)示例代码 4. 不存在满足核心常量…

全面解析React内存泄漏:原因、解决方案与最佳实践

在开发React应用时&#xff0c;内存泄漏是一个常见但容易被忽视的问题。如果处理不当&#xff0c;它会导致应用性能下降、卡顿甚至崩溃。由于React的组件化特性&#xff0c;许多开发者可能没有意识到某些操作&#xff08;如事件监听、异步请求、定时器等&#xff09;在组件卸载…

【FreeRTOS】事件标志组

文章目录 1 简介1.1事件标志1.2事件组 2事件标志组API2.1创建动态创建静态创建 2.2 删除事件标志组2.3 等待事件标志位2.4 设置事件标志位在任务中在中断中 2.5 清除事件标志位在任务中在中断中 2.6 获取事件组中的事件标志位在任务中在中断中 2.7 函数xEventGroupSync 3 事件标…