滑动窗口学习

news2025/4/23 5:45:05

2090. 半径为 k 的子数组平均值

题目

在这里插入图片描述

问题分析

给定一个数组 nums 和一个整数 k,需要构建一个新的数组 avgs,其中 avgs[i] 表示以 nums[i] 为中心且半径为 k 的子数组的平均值。如果在 i 前或后不足 k 个元素,则 avgs[i] 的值为 -1。

思路

初始化结果数组:创建一个长度与 nums 相同的数组 avgs,初始值全部设为 -1。
滑动窗口计算平均值:
对于每个索引 i,检查其前后是否各有至少 k 个元素。
如果满足条件,计算该窗口内的元素总和并求平均值(使用整数除法)。
将计算得到的平均值存入 avgs[i]。

代码

class Solution:
    def getAverages(self, nums: List[int], k: int) -> List[int]:
        n = len(nums)
        avgs = [-1] * n  # 初始化结果数组

        if k == 0:
            return nums  # k 为 0 时,每个元素的平均值就是其本身

        if 2 * k + 1 > n:
            return avgs  # 窗口大小大于数组长度,所有位置的平均值为 -1

        # 计算初始窗口的总和
        window_sum = sum(nums[:2 * k + 1])
        for i in range(k, n - k):
            avgs[i] = window_sum // (2 * k + 1)  # 计算当前窗口的平均值
            # 更新窗口总和,移除左边元素,加入右边元素
            if i + k + 1 < n:
                window_sum += nums[i + k + 1] - nums[i - k]

        return avgs

复杂度分析

时间复杂度:O(n)
空间复杂度:O(n)

学习

初始化:avgs = [-1] * n 创建一个全为 -1 的结果数组。
特殊情况处理:
if k == 0: 直接返回 nums,因为每个元素的平均值就是其本身。
if 2 * k + 1 > n: 返回全为 -1 的数组,因为窗口大小超过了数组长度。
滑动窗口:
window_sum = sum(nums[:2k+1]) 计算初始窗口(从 0 到 2k)的总和。
for i in range(k, n - k): 遍历每个有效中心位置 i。
avgs[i] = window_sum // (2 * k + 1) 计算当前窗口的平均值。
window_sum += nums[i + k + 1] - nums[i - k] 更新窗口总和,移除左边元素,加入右边元素。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2340535.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

# 基于PyTorch的食品图像分类系统:从训练到部署全流程指南

基于PyTorch的食品图像分类系统&#xff1a;从训练到部署全流程指南 本文将详细介绍如何使用PyTorch框架构建一个完整的食品图像分类系统&#xff0c;涵盖数据预处理、模型构建、训练优化以及模型保存与加载的全过程。 1. 系统概述 本系统实现了一个基于卷积神经网络(CNN)的…

v-html 显示富文本内容

返回数据格式&#xff1a; 只有图片名称 显示不出完整路径 解决方法&#xff1a;在接收数据后手动给img格式的拼接vite.config中的服务器地址 页面&#xff1a; <el-button click"">获取信息<el-button><!-- 弹出层 --> <el-dialog v-model&…

【数学建模】孤立森林算法:异常检测的高效利器

孤立森林算法&#xff1a;异常检测的高效利器 文章目录 孤立森林算法&#xff1a;异常检测的高效利器1 引言2 孤立森林算法原理2.1 核心思想2.2 算法流程步骤一&#xff1a;构建孤立树(iTree)步骤二&#xff1a;构建孤立森林(iForest)步骤三&#xff1a;计算异常分数 3 代码实现…

<项目代码>YOLO小船识别<目标检测>

项目代码下载链接 YOLOv8是一种单阶段&#xff08;one-stage&#xff09;检测算法&#xff0c;它将目标检测问题转化为一个回归问题&#xff0c;能够在一次前向传播过程中同时完成目标的分类和定位任务。相较于两阶段检测算法&#xff08;如Faster R-CNN&#xff09;&#xff0…

Crawl4AI:打破数据孤岛,开启大语言模型的实时智能新时代

当大语言模型遇见数据饥渴症 在人工智能的竞技场上&#xff0c;大语言模型&#xff08;LLMs&#xff09;正以惊人的速度进化&#xff0c;但其认知能力的跃升始终面临一个根本性挑战——如何持续获取新鲜、结构化、高相关性的数据。传统数据供给方式如同输血式营养支持&#xff…

【Spring Boot】MyBatis多表查询的操作:注解和XML实现SQL语句

1.准备工作 1.1创建数据库 &#xff08;1&#xff09;创建数据库&#xff1a; CREATE DATABASE mybatis_test DEFAULT CHARACTER SET utf8mb4;&#xff08;2&#xff09;使用数据库 -- 使⽤数据数据 USE mybatis_test;1.2 创建用户表和实体类 创建用户表 -- 创建表[⽤⼾表…

[Android]豆包爱学v4.5.0小学到研究生 题目Ai解析

拍照解析答案 【应用名称】豆包爱学 【应用版本】4.5.0 【软件大小】95mb 【适用平台】安卓 【应用简介】豆包爱学&#xff0c;一般又称河马爱学教育平台app,河马爱学。 关于学习&#xff0c;你可能也需要一个“豆包爱学”这样的AI伙伴&#xff0c;它将为你提供全方位的学习帮助…

Qt开发:软件崩溃时,如何生成dump文件

文章目录 一、程序崩溃时如何自动生成 Dump 文件二、支持多线程中的异常捕获三、在 DLL 中使用 Dump 捕获四、封装成可复用类五、MiniDumpWriteDump函数详解 一、程序崩溃时如何自动生成 Dump 文件 步骤一&#xff1a;包含必要的头文件 #include <Windows.h> #include …

普罗米修斯Prometheus监控安装(mac)

普罗米修斯是后端数据监控平台&#xff0c;通过Node_exporter/mysql_exporter等收集数据&#xff0c;Grafana将数据用图形的方式展示出来 官网各平台下载 Prometheus安装&#xff08;mac&#xff09; &#xff08;1&#xff09;通过brew安装 brew install prometheus &…

Python SQL 工具包:SQLAlchemy介绍

SQLAlchemy 是一个功能强大且灵活的 Python SQL 工具包和对象关系映射&#xff08;ORM&#xff09;库。它被广泛用于与关系型数据库进行交互&#xff0c;提供了从低级 SQL 表达式到高级 ORM 的完整工具链。SQLAlchemy 的设计目标是让开发者能够以 Pythonic 的方式操作数据库&am…

Shader属性讲解+Cg语言讲解

CPU调用GPU传递数据 修改Render组件的material属性 在脚本中更改游戏物体材质颜色代码示例&#xff1a; using System.Collections; using System.Collections.Generic; using UnityEngine;public class TestFixedColor : MonoBehaviour {void Start(){//创建预制体GameObjec…

基于LightGBM-TPE算法对交通事故严重程度的分析与可视化

基于LightGBM-TPE算法对交通事故严重程度的分析与可视化 原文&#xff1a; Analysis and visualization of accidents severity based on LightGBM-TPE 1. 引言部分 文章开篇强调了道路交通事故作为意外死亡的主要原因&#xff0c;引起了多学科领域的关注。分析事故严重性特…

什么是CRM系统,它的作用是什么?CRM全面指南

CRM&#xff08;Customer Relationship Management&#xff0c;客户关系管理&#xff09;系统是一种专门用于集中管理客户信息、优化销售流程、提升客户满意度、支持精准营销、驱动数据分析决策、加强跨部门协同、提升客户生命周期价值的业务系统工具。其中&#xff0c;优化销售…

MYSQL之库的操作

创建数据库 语法很简单, 主要是看看选项(与编码相关的): CREATE DATABASE [IF NOT EXISTS] db_name [create_specification [, create_specification] ...] create_specification: [DEFAULT] CHARACTER SET charset_name [DEFAULT] COLLATE collation_name 1. 语句中大写的是…

Linux 下的网络管理(附加详细实验案例)

一、简单了解 NM&#xff08;NetworkManager&#xff09; 在 Linux 中&#xff0c;NM 是 NetworkManager 的缩写。它是一个用于管理网络连接的守护进程和工具集。 在 RHEL9 上&#xff0c;使用 NM 进行网络配置&#xff0c;ifcfg &#xff08;也称为文件&#xff09;将不再…

基于SpringBoot的疫情居家检测管理系统(源码+数据库)

514基于SpringBoot的疫情居家检测管理系统&#xff0c;系统包含三种角色&#xff1a;管理员、用户、医生&#xff0c;主要功能如下。 【用户功能】 1. 首页&#xff1a;获取系统信息。 2. 论坛&#xff1a;参与居民讨论和分享信息。 3. 公告&#xff1a;查看社区发布的各类公告…

MATLAB 控制系统设计与仿真 - 35

MATLAB鲁棒控制器分析 所谓鲁棒性是指控制系统在一定(结构&#xff0c;大小)的参数扰动下&#xff0c;维持某些性能的特征。 根据对性能的不同定义&#xff0c;可分为稳定鲁棒性(Robust stability)和性能鲁棒性(Robust performance)。 以闭环系统的鲁棒性作为目标设计得到的…

性能比拼: Nginx vs Caddy

本内容是对知名性能评测博主 Anton Putra Nginx vs Caddy Performance 内容的翻译与整理, 有适当删减, 相关指标和结论以原作为准 引言 在本期视频中&#xff0c;我们将对比 Nginx 和 Caddy---一个用 Go 编写的 Web 服务器和反向代理。 在第一个测试中&#xff0c;我们会使用…

C++项目-衡码云判项目演示

衡码云判项目是什么呢&#xff1f;简单来说就是这是一个类似于牛客、力扣等在线OJ系统&#xff0c;用户在网页编写代码&#xff0c;点击提交后传递给后端云服务器&#xff0c;云服务器将用户的代码和测试用例进行合并编译&#xff0c;返回结果到网页。 项目最大的两个亮点&…

李宏毅NLP-6-seq2seqHMM

比较seq2seq和HMM Hidden Markov Model(HMM) 隐马尔可夫模型&#xff08;HMM&#xff09;在语音识别中的应用&#xff0c;具体内容如下&#xff1a; 整体流程&#xff1a; 左侧为语音信号&#xff08;标记为 “speech”&#xff09;&#xff0c;其特征表示为 X X X。中间蓝色模…