深度学习3-pytorch学习

news2025/3/31 0:24:25

深度学习3-pytorch学习

Tensor 定义与 PyTorch 操作

1. Tensor 定义:

Tensor 是 PyTorch 中的数据结构,类似于 NumPy 数组。可以通过不同方式创建 tensor 对象:

import torch

# 定义一个 1D Tensor
x1 = torch.Tensor([3, 4])

# 定义一个 Float 类型的 Tensor
x2 = torch.FloatTensor([4, 4])

# 使用正态分布随机生成 Tensor
x3 = torch.randn(3, 4)
print(x1)
print(x2)
print(x3)
2. PyTorch 与 NumPy 之间的转换:

可以使用 torch.from_numpy().numpy() 方法在 PyTorch Tensor 和 NumPy 数组之间进行转换:

import numpy as np

# 创建一个 NumPy 数组
numpy_tensor = np.random.randn(10, 20)

# 将 NumPy 数组转换为 PyTorch Tensor
pytorch_tensor = torch.from_numpy(numpy_tensor)

# 将 PyTorch Tensor 转换为 NumPy 数组
new_numpy_tensor = pytorch_tensor.numpy()
3. GPU 和 CPU 之间的转换:

PyTorch 支持在 GPU 上进行计算,可以通过 .cuda() 方法将 Tensor 转移到 GPU,使用 .cpu() 将其转回 CPU:

x = torch.randn(3, 4)

# 转移到 GPU(GPU 0)
x_gpu = x.cuda(0)

# 转移到 GPU(GPU 1)
x_gpu = x.cuda(1)

# 转回 CPU
x_cpu = x_gpu.cpu()

# 转换为 NumPy 数组
x_array = x_gpu.cpu().numpy()
4. Tensor 的形状和维度:

可以使用 .shape.size() 查看 Tensor 的维度和形状,unsqueezesqueeze 方法分别用于增加和减少维度:

x = torch.randn(4, 3)

# 查看形状
print(x.shape)

# 增加一个维度
x_unsqueezed = x.unsqueeze(1)
print(x_unsqueezed.shape)  # 形状变为 [4, 1, 3]

# 减少一个维度
x_squeezed = x_unsqueezed.squeeze()
print(x_squeezed.shape)  # 形状变回 [4, 3]
5. Tensor 的高级操作:
  • 求最大值和索引:
max_index, max_value = torch.max(x, dim=1)  # 获取每行的最大值和索引
print(max_index)
print(max_value)
  • 求和:
sum_tensor = torch.sum(x, dim=1, keepdim=True)  # 求每行的和
print(sum_tensor)
6. 求梯度:

Tensor 的 requires_grad_() 方法使得 Tensor 可以追踪梯度,允许进行反向传播(自动求导):

x = torch.tensor(3.0, requires_grad=True)
y = x**2

# 求导
y.backward()

# 打印梯度
print(x.grad)  # 输出:tensor(6.)

注意: 求得的梯度会累积,如果不清零会对后续计算产生影响。

python复制编辑x.grad = torch.tensor(0.0)  # 清空梯度
y2 = x**2
y2.backward()
print(x.grad)  # 输出:tensor(6.)
7. 创建不同类型的 Tensor:
# 创建全为 1 的 Tensor
tensor1 = torch.ones((10, 4))
print(tensor1)

# 创建全为 0 的 Tensor
tensor2 = torch.zeros((10, 4))
print(tensor2)

# 创建正态分布随机值的 Tensor
tensor3 = torch.normal(0, 0.1, (4, 10, 4))
print(tensor3)
8. Variable:

为了构建神经网络,PyTorch 引入了 Variable 类,主要用于对 Tensor 进行自动求导操作。Variable 包含了三个重要属性:

  • .data:用于访问 Tensor。
  • .grad:用于访问梯度(导数)。
  • .grad_fn:描述如何计算这个 Variable。
from torch.autograd import Variable

# 创建 Variable
x = Variable(torch.ones(2, 2), requires_grad=True)
y = Variable(torch.ones(2, 2), requires_grad=True)
z = torch.sum(x + y)

# 查看数据
print(z.data)

# 反向传播
z.backward()

# 打印梯度
print(x.grad)
9. 动态图/静态图

PyTorch 采用动态图(Dynamic Computation Graph)的方式,每次计算时都会重新构建计算图,这样便于调试,而 TensorFlow 则使用静态图(Static Computation Graph),在定义计算图之后执行。这使得 PyTorch 更适合快速开发和调试。

  • Tensor 是 PyTorch 中最基本的数据结构,类似于 NumPy 数组,但可以在 GPU 上进行加速计算。
  • PyTorch 提供了丰富的 Tensor 操作,如求最大值、求和、改变形状、求梯度等。
  • Variable 是 Tensor 的高级封装,它使得 PyTorch 在进行梯度计算时更加灵活。
  • 动态计算图使得 PyTorch 在调试和开发时非常方便,但相较于 TensorFlow 的静态图,可能会稍慢。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2322922.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【工作记录】F12查看接口信息及postman中使用

可参考 详细教程:如何从前端查看调用接口、传参及返回结果(附带图片案例)_f12查看接口及参数-CSDN博客 1、接口信息 接口基础知识2:http通信的组成_接口请求信息包括-CSDN博客 HTTP类型接口之请求&响应详解 - 三叔测试笔记…

2024年认证杯SPSSPRO杯数学建模B题(第二阶段)神经外科手术的定位与导航全过程文档及程序

2024年认证杯SPSSPRO杯数学建模 B题 神经外科手术的定位与导航 原题再现: 人的大脑结构非常复杂,内部交织密布着神经和血管,所以在大脑内做手术具有非常高的精细和复杂程度。例如神经外科的肿瘤切除手术或血肿清除手术,通常需要…

Android 12系统源码_系统启动(二)Zygote进程

前言 Zygote(意为“受精卵”)是 Android 系统中的一个核心进程,负责 孵化(fork)应用进程,以优化应用启动速度和内存占用。它是 Android 系统启动后第一个由 init 进程启动的 Java 进程,后续所有…

MOSN(Modular Open Smart Network)-05-MOSN 平滑升级原理解析

前言 大家好,我是老马。 sofastack 其实出来很久了,第一次应该是在 2022 年左右开始关注,但是一直没有深入研究。 最近想学习一下 SOFA 对于生态的设计和思考。 sofaboot 系列 SOFAStack-00-sofa 技术栈概览 MOSN(Modular O…

Flink介绍与安装

Apache Flink是一个在有界数据流和无界数据流上进行有状态计算分布式处理引擎和框架。Flink 设计旨在所有常见的集群环境中运行,以任意规模和内存级速度执行计算。 一、主要特点和功能 1. 实时流处理: 低延迟: Flink 能够以亚秒级的延迟处理数据流,非常…

【gradio】从零搭建知识库问答系统-Gradio+Ollama+Qwen2.5实现全流程

从零搭建大模型问答系统-GradioOllamaQwen2.5实现全流程(一) 前言一、界面设计(计划)二、模块设计1.登录模块2.注册模块3. 主界面模块4. 历史记录模块 三、相应的接口(前后端交互)四、实现前端界面的设计co…

PowerBI,用度量值实现表格销售统计(含合计)的简单示例

假设我们有产品表 和销售表 我们想实现下面的效果 表格显示每个产品的信息,以及单个产品的总销量 有一个切片器能筛选各个门店的产品销量 还有一个卡片图显示所筛选条件下,所有产品的总销量 实现方法: 1.我们新建一个计算表,把…

26考研——查找_树形查找_二叉排序树(BST)(7)

408答疑 文章目录 三、树形查找二叉排序树(BST)二叉排序树中结点值之间的关系二叉树形查找二叉排序树的查找过程示例 向二叉排序树中插入结点插入过程示例 构造二叉排序树的过程构造示例 二叉排序树中删除结点的操作情况一:被删除结点是叶结点…

【行驶证识别】批量咕嘎OCR识别行驶证照片复印件图片里的文字信息保存表格或改名字,基于QT和腾讯云api_ocr的实现方式

项目背景 在许多业务场景中,如物流管理、车辆租赁、保险理赔等,常常需要处理大量的行驶证照片复印件。手动录入行驶证上的文字信息,像车主姓名、车辆型号、车牌号码等,不仅效率低下,还容易出现人为错误。借助 OCR(光学字符识别)技术,能够自动识别行驶证图片中的文字信…

21.Excel自动化:如何使用 xlwings 进行编程

一 将Excel用作数据查看器 使用 xlwings 中的 view 函数。 1.导包 import datetime as dt import xlwings as xw import pandas as pd import numpy as np 2.view 函数 创建一个基于伪随机数的DataFrame,它有足够多的行,使得只有首尾几行会被显示。 df …

LabVIEW FPGA与Windows平台数据滤波处理对比

LabVIEW在FPGA和Windows平台均可实现数据滤波处理,但两者的底层架构、资源限制、实时性及应用场景差异显著。FPGA侧重硬件级并行处理,适用于高实时性场景;Windows依赖软件算法,适合复杂数据处理与可视化。本文结合具体案例&#x…

【NLP 48、大语言模型的神秘力量 —— ICL:in context learning】

目录 一、ICL的优势 1.传统做法 2.ICL做法 二、ICL的发展 三、ICL成因的两种看法 1.meta learning 2.Bayesian Inference 四、ICL要点 ① 语言模型的规模 ② 提示词prompt中提供的examples数量和顺序 ③ 提示词prompt的形式(format) 五、fine-tune VS I…

vue 中渲染 markdown 格式的文本

文章目录 需求分析第一步:安装依赖第二步:创建 Markdown 渲染组件第三步,使用实例扩展功能1. 代码高亮:2. 自定义渲染规则:需求 渲染 markdown 格式的文本 分析 在Vue 3中实现Markdown渲染的常见方法。通常有两种方式:使用现有的Markdown解析库,或者自己编写解析器…

工业4G路由器赋能智慧停车场高效管理

工业4G路由器作为智慧停车场管理系统通信核心,将停车场内的各个子系统连接起来,包括车牌识别系统、道闸控制系统、车位检测系统、收费系统以及监控系统等。通过4G网络,将这些系统采集到的数据传输到云端服务器或管理中心,实现信息…

企业如何平稳实现从Tableau到FineBI的信创迁移?

之前和大家分享了《如何将Tableau轻松迁移到Power BI》。但小编了解到,如今有些企业更愿意选择国产BI平台。为此,小编今天以Fine BI为例子,介绍如何从Tableau轻松、低成本地迁移到国产BI平台。 在信创政策全面推进的背景下,企业数…

蓝桥与力扣刷题(蓝桥 蓝桥骑士)

题目:小明是蓝桥王国的骑士,他喜欢不断突破自我。 这天蓝桥国王给他安排了 N 个对手,他们的战力值分别为 a1,a2,...,an,且按顺序阻挡在小明的前方。对于这些对手小明可以选择挑战,也可以选择避战。 身为高傲的骑士&a…

前端学习笔记--CSS

HTMLCSSJavaScript 》 结构 表现 交互 如何学习 1.CSS是什么 2.CSS怎么用? 3.CSS选择器(重点,难点) 4.美化网页(文字,阴影,超链接,列表,渐变。。。) 5…

31天Python入门——第15天:日志记录

你好,我是安然无虞。 文章目录 日志记录python的日志记录模块创建日志处理程序并配置输出格式将日志内容输出到控制台将日志写入到文件 logging更简单的一种使用方式 日志记录 日志记录是一种重要的应用程序开发和维护技术, 它用于记录应用程序运行时的关键信息和…

使用ucharts写的小程序,然后让圆环中间的空白位置变大

将ringWidth属性调小 extra: { ring: { ringWidth: 20, activeOpacity: 1.5, activeRadius: 10, offsetAngle: 0, labelWidth: 15, border: true, borderWidth: 0, borderColor: #F…

GPT-4o Image

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领…