1. 引言 概率模型在机器学习中广泛应用于数据分析、模式识别和推理任务。本文将调研几种重要的概率模型,包括EM算法、MCMC、朴素贝叶斯、贝叶斯网络、概率图模型(CRF、HMM)以及最大熵模型,介绍其基本原理、算法流程、应用场景及优势。 2. EM算法(Expectation-Maximization) 2.1 概述 EM算法是一种用于含有隐变量或缺失数据的最大似然估计方法。其核心思想是交替执行期望(E)步骤和最大化(M)步骤,逐步优化参数。 2.2 算法流程 初始化:设定参数的初始值 ( θ ( 0 )