Python---数据分析(Pandas十一:二维数组DataFrame统计计算二)

news2025/3/28 3:57:25

1、std

        用于计算 DataFrame 中数值的标准差。

DataFrame.std(axis=0, skipna=True, ddof=1, numeric_only=False, **kwargs)
描述说明
axis

{0 或 ‘index’, 1 或 ‘columns’, None}, 默认为 0。这个参数决定了计算标准差是在哪个轴上进行:

如果 axis=0 或 axis='index',则对每列进行计算,返回一个 Series,其 索引为列名,值为每列的标准差。

如果 axis=1 或 axis='columns',则对每行进行计算,返回一个 Series, 其索引为行索引,值为每行的标准差。

skipna布尔值,默认为 True。如果为 True,则在计算标准差时会忽略 NaN 值。
ddof整数,默认为 1。Delta Degrees of Freedom,计算样本标准差时使用的无 偏估计的自由度修正。对于整个群体的标准差, ddof 应该设置为 0。
numeric_only布尔值,默认为 False。如果为 True,则只对数值列进行计算, 忽略非数值列。
**kwargs其他关键字参数。这些参数通常用于兼容性或特殊用途,通常不需 要。
import pandas as pd
import numpy as np
df = pd.DataFrame({
    'A': [1, 2, 3, 4],
    'B': [5, 6, 7, 8],
})
sum_per_column = df.std()
print("std per column:")
print(sum_per_column)
std per column:
A    1.290994
B    1.290994
dtype: float64

2 、quantile

        用于计算 DataFrame 中数值的分位数。

DataFrame.quantile(q=0.5, axis=0, numeric_only=False, interpolation='linear', method='single')
描述说明
q可以是单个浮点数或浮点数列表,默认为 0.5。要计算的的分位数,应该在 0 到 1 之间。例如,q=0.5 表示中位数。
axis

{0 或 ‘index’, 1 或 ‘columns’, None}, 默认为 0。这个参数决定了计算分位数是在哪个轴上进行:

如果 axis=0 或 axis='index',则对每列进行计算,返回一个 Series,其 索引为列名,值为每列的分位数。

如果 axis=1 或 axis='columns',则对每行进行计算,返回一个 Series, 其索引为行索引,值为每行的分位数。

numeric_only布尔值,默认为 False。如果为 True,则只对数值列进行计算, 忽略非数值列。
interpolation

{‘linear’, ‘lower’, ‘higher’, ‘midpoint’, ‘nearest’}, 默认为 ‘linear’。这个参数决定了分位数在数据不包含精确分位数值时的插值方法:

‘linear’: 线性插值。

‘lower’: 选择小于分位数的最大值。

‘higher’: 选择大于分位数的最小值。

‘midpoint’: 选择两个相邻数据的中间值。

‘nearest’: 选择最接近分位数的值。

method

{‘single’, ‘table’}, 默认为 ‘single’。这个参数决定了计算分位数的方法:

‘single’: 对每列或每行单独计算分位数。

‘table’: 使用整个表的分位数。选择table时,插值方法只能是higher、 lower、nearest之一。

import pandas as pd
import numpy as np
df = pd.DataFrame({
    'A': [1, 2, 3, 4],
    'B': [5, 6, 7, 8],
})
sum_per_column = df.quantile()
print("quantile per column:")
print(sum_per_column)
quantile per column:
A    2.5
B    6.5
Name: 0.5, dtype: float64

3、 cummax

        用于计算 DataFrame 中数值的累积最大值。

DataFrame.cummax(axis=0, skipna=True, *args, **kwargs)
描述说明
axis

{0 或 ‘index’, 1 或 ‘columns’, None}, 默认为 0。这个参数决定了计算累积最大值是在哪个轴上进行:

如果 axis=0 或 axis='index',则对每列进行计算,返回一个 Series,其 索引为列名,值为每列的累积最大值。

如果 axis=1 或 axis='columns',则对每行进行计算,返回一个 Series, 其索引为行索引,值为每行的累积最大值。

skipna布尔值,默认为 True。如果为 True,则在计算累积最大值时会忽略 NaN 值。
*args 和 **kwargs其他关键字参数。这些参数通常用于兼容性或特殊用途,通常不需 要。
import pandas as pd
import numpy as np
 
# 创建一个 DataFrame
df = pd.DataFrame({
    'A': [1, 2, np.nan, 4, 5],
    'B': [5, np.nan, 3, 2, 1],
})
 
print(df)
 
# 计算每列的累积最大值
cummax_per_column = df.cummax(axis=0)
print("Cumulative max per column:")
print(cummax_per_column)
 
# 计算每行的累积最大值
cummax_per_row = df.cummax(axis=1)
print("\nCumulative max per row:")
print(cummax_per_row)
     A    B
0  1.0  5.0
1  2.0  NaN
2  NaN  3.0
3  4.0  2.0
4  5.0  1.0
Cumulative max per column:
     A    B
0  1.0  5.0
1  2.0  NaN
2  NaN  5.0
3  4.0  5.0
4  5.0  5.0

Cumulative max per row:
     A    B
0  1.0  5.0
1  2.0  NaN
2  NaN  3.0
3  4.0  4.0
4  5.0  5.0

4、 cummin

 用于计算 DataFrame 中数值的累积最小值。

DataFrame.cummin(axis=0, skipna=True, *args, **kwargs)
描述说明
axis

{0 或 ‘index’, 1 或 ‘columns’, None}, 默认为 0。这个参数决定了计算累积最小值是在哪个轴上进行:

如果 axis=0 或 axis='index',则对每列进行计算,返回一个 Series,其 索引为列名,值为每列的累积最小值。

如果 axis=1 或 axis='columns',则对每行进行计算,返回一个 Series, 其索引为行索引,值为每行的累积最小值。

skipna布尔值,默认为 True。如果为 True,则在计算累积最小值时会忽略 NaN 值。
*args 和 **kwargs其他关键字参数。这些参数通常用于兼容性或特殊用途,通常不需 要。
import pandas as pd
import numpy as np
 
# 创建一个 DataFrame
df = pd.DataFrame({
    'A': [1, 2, np.nan, 4, 5],
    'B': [5, np.nan, 3, 2, 1],
})
 
print(df)
 
# 计算每列的累积最小值
cummin_per_column = df.cummin(axis=0)
print("Cumulative min per column:")
print(cummax_per_column)
 
# 计算每行的累积最小值
cummin_per_row = df.cummin(axis=1)
print("\nCumulative min per row:")
print(cummax_per_row)
     A    B
0  1.0  5.0
1  2.0  NaN
2  NaN  3.0
3  4.0  2.0
4  5.0  1.0
Cumulative min per column:
     A    B
0  1.0  5.0
1  2.0  NaN
2  NaN  5.0
3  4.0  5.0
4  5.0  5.0

Cumulative min per row:
     A    B
0  1.0  5.0
1  2.0  NaN
2  NaN  3.0
3  4.0  4.0
4  5.0  5.0

5、 cumsum

         用于计算 DataFrame 中数值的累积 和。

DataFrame.cumsum(axis=0, skipna=True, *args, **kwargs)
描述说明
axis

{0 或 ‘index’, 1 或 ‘columns’, None}, 默认为 0。这个参数决定了计算累积 和是在哪个轴上进行:

如果 axis=0 或 axis='index',则对每列进行计算,返回一个 Series,其 索引为列名,值为每列的累积 和。

如果 axis=1 或 axis='columns',则对每行进行计算,返回一个 Series, 其索引为行索引,值为每行的累积 和。

skipna布尔值,默认为 True。如果为 True,则在计算累积 和时会忽略 NaN 值。
*args 和 **kwargs其他关键字参数。这些参数通常用于兼容性或特殊用途,通常不需 要。
import pandas as pd
import numpy as np
 
# 创建一个 DataFrame
df = pd.DataFrame({
    'A': [1, 2, np.nan, 4, 5],
    'B': [5, np.nan, 3, 2, 1],
})
 
print(df)
 
# 计算每列的累积和
cumsum_per_column = df.cumsum(axis=0)
print("Cumulative sum per column:")
print(cummax_per_column)
 
# 计算每行的累积和
cumsum_per_row = df.cumsum(axis=1)
print("\nCumulative sum per row:")
print(cummax_per_row)
     A    B
0  1.0  5.0
1  2.0  NaN
2  NaN  3.0
3  4.0  2.0
4  5.0  1.0
Cumulative sum per column:
     A    B
0  1.0  5.0
1  2.0  NaN
2  NaN  5.0
3  4.0  5.0
4  5.0  5.0

Cumulative sum per row:
     A    B
0  1.0  5.0
1  2.0  NaN
2  NaN  3.0
3  4.0  4.0
4  5.0  5.0

6、 cumprod

         用于计算 DataFrame 中数值的累积乘积。

DataFrame.cumprod(axis=0, skipna=True, *args, **kwargs)
描述说明
axis

{0 或 ‘index’, 1 或 ‘columns’, None}, 默认为 0。这个参数决定了计算累积乘积是在哪个轴上进行:

如果 axis=0 或 axis='index',则对每列进行计算,返回一个 Series,其 索引为列名,值为每列的累积乘积。

如果 axis=1 或 axis='columns',则对每行进行计算,返回一个 Series, 其索引为行索引,值为每行的累积乘积。

skipna布尔值,默认为 True。如果为 True,则在计算累积乘积时会忽略 NaN 值。
*args 和 **kwargs其他关键字参数。这些参数通常用于兼容性或特殊用途,通常不需 要。
import pandas as pd
import numpy as np
 
# 创建一个 DataFrame
df = pd.DataFrame({
    'A': [1, 2, np.nan, 4, 5],
    'B': [5, np.nan, 3, 2, 1],
})
 
print(df)
 
# 计算每列的累积乘积
cumprod_per_column = df.cumprod(axis=0)
print("Cumulative sum per column:")
print(cummax_per_column)
 
# 计算每行的累积乘积
cumprod_per_row = df.cumprod(axis=1)
print("\nCumulative sum per row:")
print(cummax_per_row)
     A    B
0  1.0  5.0
1  2.0  NaN
2  NaN  3.0
3  4.0  2.0
4  5.0  1.0
Cumulative sum per column:
     A    B
0  1.0  5.0
1  2.0  NaN
2  NaN  5.0
3  4.0  5.0
4  5.0  5.0

Cumulative sum per row:
     A    B
0  1.0  5.0
1  2.0  NaN
2  NaN  3.0
3  4.0  4.0
4  5.0  5.0

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2321084.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

OpenCV平滑处理:图像去噪与模糊技术详解

引言 在图像处理中,噪声是一个常见的问题,它可能来自于图像采集设备、传输过程或环境干扰。为了去除噪声并改善图像质量,平滑处理(Smoothing)是一种常用的技术。OpenCV提供了多种平滑处理方法,包括均值滤波…

使用Python将视频转化为gif

使用Python将视频转化为gif 一、前言二、准备三、测试 一、前言 最近想把喜欢的视频片段作成gif,就试着用Python做了下,感觉效果还行,这里做个记录。 二、准备 先下载安装对应的库,命令如下: pip install moviepy …

HTTP长连接与短连接的前世今生

HTTP长连接与短连接的前世今生 大家好!作为一名在互联网摸爬滚打多年的开发者,今天想跟大家聊聊HTTP中的长连接和短连接这个话题。 记得我刚入行时,对这些概念一头雾水,希望这篇文章能帮助新入行的朋友少走些弯路。 什么是HTTP…

批量将 PPT 文档中的图片提取到文件夹

在 PPT 文档中我们可以插入很多的图片来丰富我们的幻灯片页面,但是当我们需要将 PPT 幻灯片中的图片提取出来的时候,会非常的麻烦,因为我们需要打开 PPT 然后将图片保存起来。会非常的耗费我们的时间和精力。今天给大家介绍的就是一种批量将 …

yolo目标检测算法在DJI上的研究分析(大纲)

yolo目标检测算法在DJI上的研究分析 面向边缘计算的实时目标检测系统设计与部署 第一章 绪论 1.1 研究背景与意义 目标检测技术需求: DJI设备(如无人机、摄像头)在安防、巡检、农业等场景中的广泛应用现有YOLO算法在高分辨率图像或资源受限…

MyBatisPlus(SpringBoot版)学习第二讲:基本CRUD

目录 1.BaseMapper 2. 基本CRUD 1. 插入一条记录 2. 删除 1>. 根据ID删除 2>. 根据实体(ID)删除 3>. 根据columnMap条件删除 4>. 根据entity条件删除 5>. 根据ID批量删除 3. 修改 1>. 根据ID修改 2>. 根据whereEntity条…

基于Spring Boot的企业内管信息化系统的设计与实现(LW+源码+讲解)

专注于大学生项目实战开发,讲解,毕业答疑辅导,欢迎高校老师/同行前辈交流合作✌。 技术范围:SpringBoot、Vue、SSM、HLMT、小程序、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、安卓app、大数据、物联网、机器学习等设计与开发。 主要内容:…

Bitcoin Thunderbolt 内测通道开启,加速比特币交易新时代

比特币作为全球领先的加密货币,一直占据着去中心化金融的核心地位。然而,随着比特币生态的不断扩展,其交易速度和扩容问题逐渐成为制约发展的关键瓶颈。为解决这一难题, 比特币雷电网络(Bitcoin Thunderbolt&#xff0…

QT笔记----QCheckBox

文章目录 概要1、QCheckBox 的基本概念2、单个QCheckBox3、多个QCheckBox同时应用3.1、实现效果3.2、实现Demo 概要 在 Qt 应用程序开发中,QCheckBox 是一个常用的用户界面元素,它允许用户在两种状态(选中和未选中)之间进行切换&a…

GR00T N1——英伟达开源的通用人形VLA:类似Helix的快与慢双系统,且可类似ViLLA利用海量的无标注视频做训练

前言 就在昨天3.19日的凌晨,英伟达发布的GR00T N1还是很有含金量的(上午已有好几个朋友私我了),由此可以看到很多相关工作的影子,比如helix π0 LAPA,具体而言,其具有双系统架构 VLM模块(系统2)通过视觉和语言指令解…

数据建模流程: 概念模型>>逻辑模型>>物理模型

数据建模流程 概念模型 概念模型是一种高层次的数据模型,用于描述系统中的关键业务概念及其之间的关系。它主要关注业务需求和数据需求,而不涉及具体的技术实现细节。概念模型通常用于在项目初期帮助业务人员和技术人员达成共识,确保对业务需…

光谱仪与光谱相机的核心区别与协同应用

一、核心功能与数据维度 ‌光谱仪‌ ‌功能定位‌:专注单点或线状区域的光谱分析,通过色散元件(光栅/棱镜)分离波长,生成一维或二维光谱曲线,用于量化光强、吸收率等参数‌。 ‌数据维度‌:输…

运行时智控:PanLang 开发者指南(一)运行时系统核心模块实现——PanLang 原型全栈设计方案与实验性探索5

运行时智控:PanLang 开发者指南(一)运行时系统核心模块实现——PanLang 原型全栈设计方案与实验性探索5 文章目录 运行时智控:PanLang 开发者指南(一)运行时系统核心模块实现——PanLang 原型全栈设计方案与…

操作系统导论——第13章 抽象:地址空间

一、早期系统 从内存来看,早期的机器并没有提供多少抽象给用户。基本上,机器的物理内存如图13.1所示 操作系统曾经是一组函数(实际上是一个库),在内存中(在本例中,从物理地址0开始)&…

C# 调用 VITS,推理模型 将文字转wav音频net8.0 跨平台

一、系统环境 操作系统:win10,win11 运行环境:dotnet8 工具:命令行,powershell 开源库:sherpa-onnx 二、工具和源码下载 开源库:https://k2-fsa.github.io/sherpa/onnx/index.html 运行环境下载 https://dotnet.microsoft.c…

C#基于MVC模式实现TCP三次握手,附带简易日志管理模块

C#基于MVC模式实现TCP三次握手 1 Model1.1 ServerModel1.2 ClientModel1.3 配置参数模块1.4 日志管理模块1.4.1 数据结构1.4.1 日志管理工具类1.4.1 日志视图展示1.4.1.1 UcLogManage.cs1.4.1.2 UcLogManage.Designer.cs 2 视图(View)2.1 ViewServer2.1.…

分布式算法:Paxos Raft 两种共识算法

1. Paxos算法 Paxos算法是 Leslie Lamport(莱斯利兰伯特)在 1990 年提出的一种分布式系统共识算法。也是第一个被证明完备的共识算法(前提是不存在恶意节点)。 1.1 简介 Paxos算法是第一个被证明完备的分布式系统共识算法。共识…

什么是数据库监控

数据库监控是一个综合的过程,涉及观察、分析和优化组织内数据库的性能、运行状况和可用性。通过持续跟踪查询执行时间、CPU使用率、内存消耗和存储I/O等指标,数据库监控使管理员能够主动识别和解决潜在问题。这种对数据库操作的实时可见性对于确保应用程…

Java学习总结-泛型

什么是泛型&#xff1f; 定义 类、接口、方法时&#xff0c;同时声明了一个或多个类型变量&#xff08;如&#xff1a;<E>&#xff09;&#xff0c;称为泛型类、泛型接口、泛型方法、他们统称为泛型。public class ArrayList<E>{ }。 有什么作用呢&#xf…

基于深度学习的相位调制算法步骤

1.构建网络结构 2.制作数据集 3.训练网络 4.引入评价指标 5.迭代优化 总结 通过以上步骤&#xff0c;可以实现基于深度学习的相位调制算法&#xff1a; 使用 U-Net 构建神经网络。 生成数据集并训练网络。 使用训练好的网络预测相位分布。 通过相关系数 γ 评估调制效果&…