【Pandas】pandas Series plot.barh

news2025/3/22 7:09:23

Pandas2.2 Series

Plotting

方法描述
Series.plot([kind, ax, figsize, …])用于绘制 Series 对象的数据可视化图表
Series.plot.area([x, y, stacked])用于绘制堆叠面积图(Stacked Area Plot)
Series.plot.bar([x, y])用于绘制垂直条形图(Vertical Bar Plot)
Series.plot.barh([x, y])用于绘制水平条形图(Horizontal Bar Plot)

pandas.Series.plot.barh([x, y])

pandas.Series.plot.barh 方法用于绘制水平条形图(Horizontal Bar Plot)。水平条形图可以直观地展示每个类别的数值大小,特别适用于类别标签较长的情况。

参数说明
  • x:可选,Series 的索引或列名,作为 x 轴的数据。
  • y:可选,Series 的列名,作为 y 轴的数据。
示例
import pandas as pd
import matplotlib.pyplot as plt

plt.rcParams['font.family'] = ['SimHei']
# 创建一个示例 Series
data = pd.Series([10, 20, 30, 40, 50], index=['A', 'B', 'C', 'D', 'E'])

# 绘制水平条形图
data.plot(kind='barh', title='水平条形图示例', color='lightgreen')
plt.xlabel('值')
plt.ylabel('类别')
plt.show()
结果
  • 水平条形图示例
    • 图表类型:水平条形图
    • 标题:水平条形图示例
    • x 轴标签:值
    • y 轴标签:类别
    • 条形颜色:浅绿色
    • 数据系列:A、B、C、D、E
    • 每个条形的长度对应 Series 中的值

通过这个示例,可以看到 pandas.Series.plot.barh 方法如何绘制水平条形图,从而直观地展示每个类别的数值大小。水平条形图特别适用于类别标签较长或需要更清晰地展示类别名称的情况。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2319414.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

又双叒叕Scrapy爬虫相关的面试题及详细解答

Scrapy是Python开发的一个快速、高层次的网络爬虫框架,专注于高效抓取网页并提取结构化数据。其核心设计基于异步处理机制,适合大规模数据采集任务。 文章目录 基础概念1. Scrapy框架的核心组件有哪些?架构与流程2. 描述Scrapy的工作流程核心组件详解3. 如何自定义Item Pipe…

使用STM32CubeMX+DMA+空闲中断实现串口接收和发送数据(STM32G070CBT6)

1.STM32CubeMX配置 (1)配置SYS (2)配置RCC (3)配置串口,此处我用的是串口4,其他串口也是一样的 (4)配置DMA,将串口4的TX和RX添加到DMA中 &#…

【视觉提示学习】3.21论文随想

. . Frontiers of Information Technology & Electronic Engineering. 2024, 25(1): 42-63 https://doi.org/10.1631/FITEE.2300389 中文综述,根据里面的架构,把视觉提示学习分成两类,一类是单模态提示学习(以vit为代表&…

(一)丶Windows安装RabbitMQ可能会遇到的问题

一丶可能会忘了配置ERLang的环境变量 二丶执行命令时报错 第一步 rabbitmq-plugins enable rabbitmq_management 第二部 rabbitmqctl status 三丶修改.erlang.cookie 文件 1.找到C盘目下的.erlang.cookie文件 C:\Users\admin\.erlang.cookie C:\Windows\System32\config\sys…

Mistral AI发布开源多模态模型Mistral Small 3.1:240亿参数实现超越GPT-4o Mini的性能

法国人工智能初创公司Mistral AI于2025年3月正式推出新一代开源模型Mistral Small 3.1 ,该模型凭借240亿参数的轻量级设计,在多项基准测试中表现优异,甚至超越了Google的Gemma 3和OpenAI的GPT-4o Mini等主流专有模型。 1、核心特性与优势 多…

springboot整合mybatis-plus【详细版】

目录 一,简介 1. 什么是mybatis-plus2.mybatis-plus特点 二,搭建基本环境 1. 导入基本依赖:2. 编写配置文件3. 创建实体类4. 编写controller层5. 编写service接口6. 编写service层7. 编写mapper层 三,基本知识介绍 1. 基本注解 T…

Qt之MVC架构MVD

什么是MVC架构: MVC模式(Model–view–controller)是软件工程中的一种软件架构模式,把软件系统分为三个基本部分:模型(Model)、视图(View)和控制器(Controll…

深度解析学术论文成果评估(Artifact Evaluation):从历史到现状

深度解析学术论文成果评估(Artifact Evaluation):从历史到现状 引言 在计算机科学和工程领域的学术研究中,可重复性和可验证性越来越受到重视。随着实验性研究的复杂性不断增加,确保研究成果可以被其他研究者验证和构建变得尤为重要。这一需…

二分查找上下界问题的思考

背景 最近在做力扣hot100中的二分查找题目时,发现很多题目都用到了二分查找的变种问题,即二分查找上下界问题,例如以下题目: 35. 搜索插入位置 74. 搜索二维矩阵 34. 在排序数组中查找元素的第一个和最后一个位置 它们不同于查找…

关于FastAPI框架的面试题及答案解析

FastAPl是一个现代、快速(高性能)的Web框架,用于构建API,基于Python3.7+的类型提示功能。它由Python开发者SebastianRamirez创建,并且使用了Starlette作为其核心组件以及Pydantic进行数据验证。 文章目录 基础篇1. FastAPI的核心优势是什么?2. 如何定义一个GET请求路由?…

HashMap添加元素的流程图

文章目录 JDK7 vs JDK8 的 HashMap 结构变化Java8 中哈希表的红黑树优化机制HashMap 添加元素的完整流程解析1. 计算 key 的哈希值并确定索引2. 检查该索引位置是否已有元素3. 处理哈希冲突4. 判断当前存储结构(链表还是红黑树)5. 判断链表长度是否超过 …

面向医药仓储场景下的药品分拣控制策略方法 研究(大纲)

面向医药仓储场景下的药品分拣控制策略方法研究 基于多机器人协同与智能调度的分拣系统设计 第一章 绪论 1.1 研究背景与意义 医药仓储自动化需求: 人工分拣效率低、出错率高(如药品批次混淆、过期风险)温控药品(如疫苗、生物制…

AI大模型介绍

大模型介绍 大模型是指具有大规模参数和复杂计算结构的机器学习模型,通常由深度神经网络构建而成,拥有数十亿甚至数千亿个参数 开发大模型不是从0开始,是建立在已有的大模型基座模型上做开发,构建企业知识库(向量数据库…

OpenPCDet详细部署与复现

OpenPCDet简介 OpenPCDet是一个用于3D目标检测的开源工具箱,它提供了多种数据集的加载器,支持多种模型,并且易于扩展。 本人使用硬件与环境 Linux操作系统(Ubuntu20.04) Python环境(Anaconda下独立创建&…

同旺科技USB to I2C 适配器 ---- 指令之间延时功能

所需设备: 内附链接 1、同旺科技USB to I2C 适配器 1、指令之间需要延时发送怎么办?循环过程需要延时怎么办?如何定时发送?现在这些都可以轻松解决; 2、只要在 “发送数据” 栏的Delay单元格里面输入相应的延迟时间就…

网络华为HCIA+HCIP NFV

目录 NFV关键技术:虚拟化 NFV关键技术:云化 NFV架构 NFV标准架构 ​编辑 NFV架构功能模块 NFV架构接口 NFV关键技术:虚拟化 在NFV的道路上,虚拟化是基础,云化是关键。传统电信网络中,各个网元都是…

MySQL0基础学习记录-下载与安装

下载 下载地址: (Windows)https://dev.mysql.com/downloads/file/?id536787 安装 直接点next,出现: 点execute 然后一直next到这页: next 然后需要给root设置一个密码: 在next。。很多页…

集成学习(下):Stacking集成方法

一、Stacking的元学习革命 1.1 概念 Stacking(堆叠法) 是一种集成学习技术,通过组合多个基学习器(base learner)的预测结果,并利用一个元模型(meta-model)进行二次训练&#xff0c…

背包问题——动态规划的经典问题包括01背包问题和完全背包问题

01背包问题:给你多个物品每个物品只能选一次,要你在不超过背包容积(或者恰好等于)的情况下选择装价值最大的组合。如果没有动态规划的基础其实是很难理解这个问题的,所以看这篇文章之前先去学习一下动态规划的基本思想…

MyBatis 面试专题

MyBatis 面试专题 基础概念MyBatis中的工作原理MyBatis 与 Hibernate 的区别?#{} 和 ${} 的区别?MyBatis 的核心组件有哪些? 映射与配置如何传递多个参数?ResultMap 的作用是什么?动态 SQL 常用标签有哪些?…