NLP高频面试题(六)——decoder-only、encoder-only和encoder-decoder的区别与联系

news2025/3/20 6:03:24

一、基本概念与代表模型

1. Encoder-only 架构

Encoder-only 架构最具代表性的模型是 BERT。BERT 使用 masked language modeling(MLM)进行预训练,即随机遮蔽部分输入词汇,让模型预测被遮蔽的词汇。由于这种架构能够同时看到输入序列的上下文信息,BERT 非常擅长文本理解)任务,如文本分类、命名实体识别等。

2. Decoder-only 架构

Decoder-only 架构的经典代表是 GPT 系列模型,如 GPT-3 和 GPT-4。GPT 模型使用 next token prediction 进行训练,在生成某个词的表征时,仅能看到该词及其之前的所有信息,而不能看到后续信息。这种单向注意力机制称为 causal mask。

3. Encoder-decoder 架构

Encoder-decoder 架构最早由 Transformer 提出,用于seq2seq任务,代表模型有 T5 和 BART。Encoder 部分处理输入序列并抽取特征,Decoder 部分根据 Encoder 提供的特征生成目标序列,典型应用是翻译和摘要生成。

二、架构对比与分析

1. 信息关注方向的不同

  • Encoder-only 架构使用的是双向注意力,即在处理文本中任何一个词时,都能同时看到上下文信息,适合理解任务。
  • Decoder-only 架构使用的是单向(causal)注意力,仅关注当前位置及其之前的词汇信息,因此天然适合文本生成任务。
  • Encoder-decoder 架构则结合了二者的特点:Encoder 使用双向注意力进行充分的上下文理解,Decoder 则使用单向注意力机制进行序列生成。

2. 任务适应性与泛化性能

  • Encoder-only 模型由于其双向注意力机制,更适合文本理解类任务,但生成能力有限。
  • Decoder-only 模型,如 GPT,能够在仅使用无监督预训练(next token prediction)的情况下,实现出色的 zero-shot 和 few-shot 泛化能力,兼具理解和生成的特性,适合多种下游任务。
  • Encoder-decoder 模型则擅长 seq2seq 任务,比如翻译、摘要生成等特定场景,但通常需要一定量的任务特定微调数据来达到最佳性能,zero-shot 泛化性能不如 Decoder-only 模型。

3. 效率与工程实现问题

在实际应用中,尤其是多轮对话场景,Decoder-only 架构由于其能复用 KV 缓存(每个 token 的表示与之前输入的信息有关),极大提高了推理效率。而 Encoder-decoder 和 PrefixLM 等变种架构则难以做到高效的 KV 缓存复用,因此效率较低。

此外,Decoder-only 架构在大规模自监督学习(如当前主流的百亿甚至千亿参数模型训练)中效率更高,工程实现更为简单。

4. 理论基础:低秩问题

有研究指出,Encoder 的双向注意力存在所谓的“低秩问题”,即由于双向注意力看到的信息过于丰富,可能导致模型的有效表达能力受到限制。而 Decoder-only 的单向注意力则天然避免了这个问题,使得其在文本生成任务中更具优势。

三、模型架构选择

  • 如果你的任务以文本理解(NLU)为主,尤其是任务特定的微调数据丰富时,Encoder-only 架构(如 BERT)是优选。
  • 如果你的任务强调文本生成,且你希望模型具备出色的泛化能力、无监督训练和 few-shot 学习的能力,那么 Decoder-only 架构(如 GPT 系列)无疑是最佳选择。
  • 如果你面临典型的序列到序列任务,比如机器翻译、摘要生成等,且有一定量的任务特定数据进行微调,Encoder-decoder 架构(如 T5 或 BART)则更为合适。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2318190.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

DeepSeek(8):结合Kimi-PPT助手一键生成演示报告

1 生成内容 在Deepseek中生成内容: 帮我创建年度计划,描述《智能枕头》产品的如何在全国销售,计划切分到每个月。从而让我们的老板和团队对报告充满信息。输出的内容我需要放到ppt中进行展示。 使用Deepseek R1模型,如下&#x…

【MySQL】MySQL如何存储元数据?

目录 1.数据字典的作用 2. MySQL 8.0 之前的数据字典 3. MySQL 8.0 及之后的数据字典 4.MySQL 8 中的事务数据字典的特征 5.数据字典的序列化 6. .sdi文件的作用: 7..sdi的存储方式 在 MySQL 中,元数据(Metadata) 是描述数…

用ASCII字符转化图片

代码 from PIL import Image# 定义 ASCII 字符集,从最暗到最亮 ASCII_CHARS "%#*-:. "def resize_image(image, new_width100):width, height image.sizeratio height / widthnew_height int(new_width * ratio)resized_image image.resize((new_wi…

蓝桥与力扣刷题(蓝桥 组队)

题目:作为篮球队教练,你需要从以下名单中选出 1 号位至 5 号位各一名球员,组成球队的首发阵容。 每位球员担任 1号位至 5号位时的评分如下表所示。请你计算首发阵容 1 号位至 5 号位的评分之和最大可能是多少? 本题为填空题&…

AI Agent系列(六) -基于ReAct架构搭建LLM Agent(Deepseek)

AI Agent系列【六】 一、 ReAct1.1 ReAct 的处理过程:1.1 代码结构 二、 Python代码实现2.1 通过Zero-shot 实现python代码实例Python代码示例1:python代码实现示例2 一、 ReAct ReAct 是 Reseaning 和 Action 两个词的前缀合成,代表着先推…

AnyTouch:跨多个视觉触觉传感器学习统一的静态动态表征

25年3月来自人大、武汉科技大学和北邮的论文“AnyTouch: Learning Unified Static-dynamic Representation Across Multiple Visuo-tactile Sensors”。 视觉触觉传感器旨在模拟人类的触觉感知,使机器人能够精确地理解和操纵物体。随着时间的推移,许多精…

YOLOv11 目标检测

本文章不再赘述anaconda的下载以及虚拟环境的配置,博主使用的python版本为3.8 1.获取YOLOv11的源工程文件 链接:GitHub - ultralytics/ultralytics: Ultralytics YOLO11 🚀 直接下载解压 2.需要自己准备的文件 文件结构如下:红…

VSCode C/C++ 环境搭建指南

一、前言 Visual Studio Code(简称 VSCode)是一款轻量级且功能强大的跨平台代码编辑器,凭借丰富的插件生态和高度的可定制性,深受开发者喜爱。对于 C/C 开发者而言,在 VSCode 中搭建开发环境,能够获得灵活…

Python 中下划线 “_” 的多面性:从变量到约定

# Python中下划线“_”的多面性:从变量到约定 在Python的语法体系里,下划线“_”看似毫不起眼,实则扮演着极为重要且多样化的角色。它不仅能作为普通变量参与编程,更在多个特殊场景下有着独特的用途与约定。深入理解下划线的各种…

Vue3项目开发:状态管理实践指南

# Vue3项目开发:状态管理实践指南 一、引言 背景介绍 在Vue项目中,状态管理是一个非常重要的话题。合理的状态管理能够帮助我们更好地组织和管理数据,提升项目的可维护性和可扩展性。本文将深入探讨Vue3项目中状态管理的最佳实践,…

数据结构-------栈

顺序栈: 一、数据结构定义 数据元素 DATATYPE typedef struct person {char name[32];char sex;int age;int score; } DATATYPE;顺序栈结构 SeqStack typedef struct list {DATATYPE *head; // 栈空间首地址int tlen; // 栈总容量(total leng…

机器学习概要

文章目录 一、什么是机器学习 二、机器学习的种类 1. 有监督学习 2. 无监督学习 3.强化学习 三、机器学习的应用 四、机器学习的步骤 1. 数据的重要性 2. 数据和学习的种类 3. 可视化 一、什么是机器学习 机器学习指的是计算机根据给定的问题、课题或环境进行学习&a…

【LangChain入门 2 Model组件】开始!LLM Models简单对话

文章目录 一、使用langchain_ollama二、采用DeepSeek的API三、Model 介绍3.1 OllamaLLM 预训练模型3.2 ChatOllama 聊天预训练模型3.3 OllamaEmbeddings 实现一个helloworld,跑通一个简单的对话。 后面章节会正式介绍LangChain的各个功能。 后台llm的端口可以任意选…

C++20 中线程管理与取消机制的深度剖析

文章目录 std::jthread:更智能的线程管理背景与优势构造函数与 std::stop_token 的集成 std::stop_token、std::stop_source 和 std::stop_callback:灵活的取消机制std::stop_token:取消请求的指示器std::stop_source:取消请求的发…

Vue3 核心特性解析:Suspense 与 Teleport 原理深度剖析

Vue3 核心特性解析:Suspense 与 Teleport 原理深度剖析 一、Teleport:突破组件层级的时空传送 1.1 实现原理图解 #mermaid-svg-75dTmiektg1XNS13 {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-s…

FPGA——实现LED流水灯

文章目录 一、Quartusll_18.1和VS Code软件的关联二、DE2-115的时钟电路三、流水灯的分层次设计四、总结 一、Quartusll_18.1和VS Code软件的关联 1.先打开Quartus II 软件,然后选择菜单栏“Tools”下的“Options…”。 2.点击“Options…”,在弹出的对…

Excel 小黑第12套

对应大猫13 涉及金额修改 -数字组 -修改会计专用 VLOOKUP函数使用(查找目标,查找范围(F4 绝对引用),返回值的所在列数,精确查找或模糊查找)双击填充柄就会显示所有值 这个逗号要中文的不能英…

滚动元素的新api

点击的时候需要双重视图滚动 itemClick(id) {// 滚动到对应位置this.$nextTick(() > {// 找到对应 id 在 initList2 中的索引const index this.initList2.findIndex((item) > item.id Number(id));if (index ! -1) {// 获取所有菜单项const menuItems document.queryS…

多机调度问题(C语言)

代码如下&#xff1a; #include<stdio.h> #include<stdlib.h>int compare(void* a, void* b)//比较函数&#xff0c;用于qsort按处理时间从大到小排序 {return *(int*)a - *(int*)b; }int LPT(int jobs[], int n, int m)//多机调度问题的LPT算法 {qsort(jobs, n, …

烽火HG680-KB_海思HI3798MV310_安卓9.0_U盘强刷固件包及注意点说明

之前发布过这个固件包&#xff0c;关于烽火HG680-KA&#xff0f;HG680-KB_海思HI3798MV310_安卓9.0_U盘强刷固件包详细说明一下&#xff0c;汇总总结一些常遇到的情况&#xff0c;这次固件会分开发布&#xff0c;以免混淆。 上一个帖子地址&#xff1a;烽火HG680-KA&#xff0…