STM32---FreeRTOS内存管理实验

news2025/3/20 2:52:26

一、简介

1、FreeRTOS内存管理简介

2、FreeRTOS提供的内存管理算法 

1、heap_1内存管理算法 

2、heap_2内存管理算法 

 4、heap_4内存管理算法 

 5、heap_5内存管理算法  

二、FreeRTOS内存管理相关API函数介绍 

三、 FreeRTOS内存管理实验

1、代码

main.c 

#include "stm32f10x.h"
#include "FreeRTOS.h"
#include "task.h"
#include "freertos_demo.h"
#include "Delay.h"
#include "sys.h"
#include "usart.h"
#include "LED.h"
#include "Key.h"

 
 int main(void)
 {	
	 
	 NVIC_PriorityGroupConfig(NVIC_PriorityGroup_4);//设置系统中断优先级分组 4 
	 uart_init(115200);	 
	 delay_init();
	 Key_Init();
	 LED_Init();
	 
	    // 创建任务
   FrrrRTOS_Demo();
		 	  
}

freertos_dome.c

#include "FreeRTOS.h"
#include "task.h"
#include "semphr.h"
#include "LED.h"
#include "Key.h"
#include "usart.h"
#include "delay.h"

/******************************************************************任务配置****************************************************/
//任务优先级
#define START_TASK_PRIO					1
//任务堆栈大小	
#define START_TASK_STACK_SIZE 	128  
//任务句柄
TaskHandle_t StartTask_Handler;
//任务函数
void start_task(void *pvParameters);


//任务优先级
#define TASK1_PRIO							2
//任务堆栈大小	
#define TASK1_STACK_SIZE 				128  
//任务句柄
TaskHandle_t Task1_Handler;
//任务函数
void task1(void *pvParameters);
 



 



/******************************************************************任务函数****************************************************/

QueueHandle_t		semaphore_handle;					//二值信号量句柄


void FrrrRTOS_Demo(void)
{
		
		semaphore_handle = xSemaphoreCreateBinary();
		if(semaphore_handle != NULL)
		{
			printf("\r\n二值信号量创建成功\r\n");		
		}
			 //创建开始任务
		xTaskCreate((TaskFunction_t )start_task,            			//任务函数
                ( char*         )"start_task",          			//任务名称
                (uint16_t       )START_TASK_STACK_SIZE, 			//任务堆栈大小
                (void*          )NULL,                  			//传递给任务函数的参数
                (UBaseType_t    )START_TASK_PRIO,       			//任务优先级
                (TaskHandle_t*  )&StartTask_Handler);   			//任务句柄 
	  // 启动任务调度
		vTaskStartScheduler();
	 
}


 void start_task(void *pvParameters)
{
	 taskENTER_CRITICAL();           //进入临界区
    //创建1任务
    xTaskCreate((TaskFunction_t )task1,     	
                (const char*    )"task1",   	
                (uint16_t       )TASK1_STACK_SIZE, 
                (void*          )NULL,				
                (UBaseType_t    )TASK1_PRIO,	
                (TaskHandle_t*  )&Task1_Handler); 
   
 								
  
		
    vTaskDelete(NULL); 							//删除开始任务
    taskEXIT_CRITICAL();            //退出临界区
}


//1 申请和释放内存并显示剩余内存信息
void task1(void *pvParameters)
{
	uint8_t		 key = 0;
	uint8_t		 t = 0;
	uint8_t	*	buffer = NULL;
	
	while(1)
	{
		key = Key_GetNum();
		if(key == 2)
		{
			buffer = pvPortMalloc(30);																			//申请内存
			if(buffer != NULL)
			{
				printf("申请内存成功\r\n");
			}else{printf("申请内存失败\r\n");};
		}else	if(key == 3){
			if(buffer != NULL)
			{
				vPortFree(buffer);
				printf("释放内存\r\n");
			}
		
																							//释放内存
		
		}
		if(t++>50)
		{
			t = 0;
			printf("剩余内存空间大小为:%d\r\n",xPortGetFreeHeapSize());
		}
		vTaskDelay(10);
	}
}







key.c

#include "stm32f10x.h"                  // Device header
#include "FreeRTOS.h"
#include "task.h"
#include "usart.h"
#include "Delay.h"
 
/**
  * 函    数:按键初始化
  * 参    数:无
  * 返 回 值:无
	* 按键:PB4/PB12/PB14
  */
void Key_Init(void)
{
	GPIO_InitTypeDef GPIO_InitStructure;
	
	/*开启时钟*/
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);		//开启GPIOB的时钟
 
	/*GPIO初始化*/
	GPIO_InitStructure.GPIO_Mode 	= GPIO_Mode_IPU;
	GPIO_InitStructure.GPIO_Pin 	= GPIO_Pin_4 | GPIO_Pin_12 | GPIO_Pin_14;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOB, &GPIO_InitStructure);						
}
 
 
/**
  * 函    数:按键获取键码
  * 参    数:无
  * 返 回 值:按下按键的键码值,范围:0~3,返回0代表没有按键按下
  * 注意事项:此函数是阻塞式操作,当按键按住不放时,函数会卡住,直到按键松手
  */
uint8_t Key_GetNum(void)
{
	uint8_t KeyNum = 0;																				//定义变量,默认键码值为0
	
	if (GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_4) == 0)			  //读PB4输入寄存器的状态,如果为0,则代表按键1按下
	{
		KeyNum= GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_4);
		delay_xms(20);																					//延时消抖
		while (GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_4) == 0);	//等待按键松手
		delay_xms(20);																					//延时消抖
		KeyNum = 1;																							//置键码为1
	}
	
	if (GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_12) == 0)			
	{
		KeyNum= GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_12);
		delay_xms(20);											
		while (GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_12) == 0);	
		delay_xms(20);									
		KeyNum = 2;											
	}
	
	if (GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_14) == 0)			
	{
		KeyNum= GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_14);
		delay_xms(20);											
		while (GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_14) == 0);	
		delay_xms(20);									
		KeyNum = 3;											
	}
	
	return KeyNum;																						//返回键码值,如果没有按键按下,所有if都不成立,则键码为默认值0
}
 
 
 
 

2、实验解析

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2318100.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

STC89C52单片机学习——第25节: [11-1]蜂鸣器

写这个文章是用来学习的,记录一下我的学习过程。希望我能一直坚持下去,我只是一个小白,只是想好好学习,我知道这会很难,但我还是想去做! 本文写于:2025.03.18 51单片机学习——第25节: [11-1]蜂鸣器 前言开发板说明引用解答和科普一、蜂鸣器…

音视频入门基础:RTP专题(19)——FFmpeg源码中,获取RTP的音频信息的实现(下)

本文接着《音视频入门基础:RTP专题(18)——FFmpeg源码中,获取RTP的音频信息的实现(上)》,继续讲解FFmpeg获取SDP描述的RTP流的音频信息到底是从哪个地方获取的。本文的一级标题从“四”开始。 四…

卷积神经网络 - 卷积的变种、数学性质

本文我们来学习卷积的变种和相关的数学性质,为后面学习卷积神经网络做准备,有些概念可能不好理解,可以先了解其概念,然后慢慢理解、逐步深入。 在卷积的标准定义基础上,还可以引入卷积核的滑动步长和零填充来增加卷积…

BLIP论文阅读

目录 现存的视觉语言预训练存在两个不足: 任务领域 数据集领域 相关研究 知识蒸馏 Method 单模态编码器: 基于图像的文本编码器: 基于图像的文本解码器: 三重目标优化 图像文本对比损失:让匹配的图像文本更加…

[动手学习深度学习]26. 网络中的网络 NiN

前面的LeNet、AlexNet、VGG在设计上的共同之处在于:先以卷积层构成的模块充分抽取空间特征,再以全连接层构成的模块来输出分类结果 其中AlexNet和VGG对LeNet的改进主要在于如何对这两个模块价款(增加通道数)和加深 这一节的NiN提出…

碰一碰发视频saas系统技术源头一站式开发文档

碰一碰发视频系统技术源头一站式开发文档 一、引言 在数字化信息传播高速发展的当下,如何让视频分享更便捷、高效,成为商家和开发者们关注的焦点。“碰一碰发视频”系统以其独特的交互方式和强大的功能优势,为视频分享领域带来了革命性变革。…

Linux目录理解

前言 最近在复习linux,发现有些目录总是忘记内容,发现有些还是得从原义和实际例子去理解会记忆深刻些。以下是个人的一些理解 Linux目录 常见的Linux下的目录如下: 1. 根目录 / (Root Directory) 英文含义:/ 是文件系统的根…

可视化图解算法:链表中倒数(最后)k个结点

1. 题目 描述 输入一个长度为 n 的链表,设链表中的元素的值为ai ,返回该链表中倒数第k个节点。 如果该链表长度小于k,请返回一个长度为 0 的链表。 数据范围:0≤n≤105,0 ≤ai≤109,0 ≤k≤109 要求&am…

Swift 并发中的任务让步(Yielding)和防抖(Debouncing)

网罗开发 (小红书、快手、视频号同名) 大家好,我是 展菲,目前在上市企业从事人工智能项目研发管理工作,平时热衷于分享各种编程领域的软硬技能知识以及前沿技术,包括iOS、前端、Harmony OS、Java、Python等…

HW基本的sql流量分析和wireshark 的基本使用

前言 HW初级的主要任务就是看监控(流量) 这个时候就需要我们 了解各种漏洞流量数据包的信息 还有就是我们守护的是内网环境 所以很多的攻击都是 sql注入 和 webshell上传 (我们不管对面是怎么拿到网站的最高权限的 我们是需要指出它是…

docker-compose install nginx(解决fastgpt跨区域)

CORS前言 CORS(Cross-Origin Resource Sharing,跨源资源共享)是一种安全措施,它允许或拒绝来自不同源(协议、域名、端口任一不同即为不同源)的网页访问另一源中的资源。它的主要作用如下: 同源策略限制:Web 浏览器的同源策略限制了从一个源加载的文档或脚本如何与另一…

设计模式(创建型)-单例模式

摘要 在软件开发的世界里,设计模式是开发者们智慧的结晶,它们为解决常见问题提供了经过验证的通用方案。单例模式作为一种基础且常用的设计模式,在许多场景中发挥着关键作用。本文将深入探讨单例模式的定义、实现方式、应用场景以及可…

鸿蒙NEXT开发问题大全(不断更新中.....)

目录 问题1:鸿蒙NEXT获取华为手机的udid ​问题2:[Fail]ExecuteCommand need connect-key? 问题3:测试时如何安装app包 问题1:鸿蒙NEXT开发获取华为手机的udid hdc -t "设备的序列号" shell bm get --udid 问题2&…

TI的Doppler-Azimuth架构(TI文档)

TI在AWR2944平台上推出新的算法架构,原先的处理方式是做完二维FFT后在RD图上做CFAR检测,然后提取各个通道数据做测角。 Doppler-Azimuth架构则是做完二维FFT后,再做角度维FFT,生成Doppler-Azimuth频谱图,然后在该频谱图…

「自动驾驶的数学交响曲:线性代数、微积分与优化理论的深度共舞」—— 解析人工智能背后的高阶数学工具链

引言 自动驾驶系统是数学工具链的集大成者。从传感器数据的多维空间映射到控制指令的生成,每一步都隐藏着线性代数、微积分、概率论和优化理论的精妙配合。本文将构建一个数学模型完整的自动驾驶案例,结合Python代码实现,揭示以下核心数学工具: 线性代数:张量运算与特征空…

调试 Rust + WebAssembly 版康威生命游戏

1. 启用 Panic 日志 1.1 让 Panic 信息显示在浏览器控制台 如果 Rust 代码发生 panic!(),默认情况下不会在浏览器开发者工具中显示详细的错误信息。这使得排查问题变得困难。 我们可以使用 console_error_panic_hook 这个 Rust crate,将 Panic 信息打…

VSCode通过SSH远程登录Windows服务器

系列 1.1 VSCode通过SSH远程登录Windows服务器 1.2 VSCode通过SSH免密远程登录Windows服务器 文章目录 系列1 准备工作2 远程服务器配置2.1 安装SSH服务器2.2 端口 3 本地电脑配置3.1 安装【Remote - SSH】。3.2 登录 1 准备工作 本地电脑Windows 11,已安装VS Cod…

qt下载和安装教程国内源下载地址

qt不断在更新中,目前qt6日渐成熟,先前我们到官方下载或者国内镜像直接可以下载到exe文件安装,但是最近几年qt官方似乎在逐渐关闭旧版本下载通道,列为不推荐下载。但是qt5以其广泛使用和稳定性,以及积累大量代码使得qt5…

mysql 到 doris 挪移数据

工具datax..... 下载地址:http://datax-opensource.oss-cn-hangzhou.aliyuncs.com/datax.tar.gz 下载以后解压:tar -xvzf datax.tar.gz 然后,理论上就可以直接使用了。但是,datax本身是python2写的,如果需要python3…

ubuntu系统下添加pycharm到快捷启动栏方法

一、背景 之前在ubuntu系统下使用pycharm时,总是要进入/home/dlut/pycharm-community-2022.1/bin文件夹下,然后终端执行命令下面的命令才可修改代码: ./pycharm.sh为了以后方便,这里给出添加pycharm到快捷启动栏的方法 二、添加…