e2studio开发RA4M2(15)----配置RTC时钟及显示时间

news2025/3/11 23:53:23

e2studio开发RA4M2.15--配置RTC时钟及显示时间

  • 概述
  • 视频教学
  • 样品申请
  • 硬件准备
  • 参考程序
  • 源码下载
  • 新建工程
  • 工程模板
  • 保存工程路径
  • 芯片配置
  • 工程模板选择
  • 时钟设置
  • SWD调试口设置
  • UART配置
  • UART属性配置
  • 设置e2studio堆栈
  • e2studio的重定向printf设置
  • R_SCI_UART_Open()函数原型
  • 回调函数user_uart_callback ()
  • printf输出重定向到串口
  • RTC配置
  • RTC属性配置
  • 设定时间
  • 设定周期性中断
  • 设定日历闹钟时间
  • 回调函数
  • R_RTC_Open函数
  • 演示效果

概述

本文将详细讲解如何借助e2studio来对瑞萨微控制器进行实时时钟(RTC)的设置和配置,以便实现日历功能和一秒钟产生的中断,从而通过串口输出实时数据。
实时时钟(RTC)模块是一种时间管理外设,主要用于记录和控制日期和时间。与常见的微控制器(MCU)中的定时器不同,RTC时钟提供了两种计时方式:日期模式和计时模式。RTC时钟的常用功能包括设置时间、设定闹钟、配置周期性中断以及启动或停止操作。
通过使用e2studio工具,我们可以轻松地对瑞萨微控制器进行RTC配置,从而实现高精度的时间和日期管理。在本文中,我们将重点讨论如何设置RTC时钟日历和产生一秒钟的中断,使得串口能够实时打印数据。

最近在瑞萨RA的课程,需要样片的可以加qun申请:925643491。

在这里插入图片描述

视频教学

https://www.bilibili.com/video/BV1dDXQY5E57/

e2studio开发RA4M2(15)----配置RTC时钟及显示时间

样品申请

https://www.wjx.top/vm/rCrkUrz.aspx

硬件准备

首先需要准备一个开发板,这里我准备的是自己绘制的开发板,需要的可以进行申请。
主控为R7FA4M2AD3CFL#AA0
在这里插入图片描述

参考程序

https://github.com/CoreMaker-lab/RA4M2

https://gitee.com/CoreMaker/RA4M2

源码下载

新建工程

在这里插入图片描述

工程模板

在这里插入图片描述

保存工程路径

在这里插入图片描述

芯片配置

本文中使用R7FA4M2AD3CFL#AA0来进行演示。

在这里插入图片描述

工程模板选择

在这里插入图片描述

时钟设置

开发板上的外部高速晶振为12M.

在这里插入图片描述

需要修改XTAL为12M。

在这里插入图片描述

SWD调试口设置

在这里插入图片描述

UART配置

在这里插入图片描述

点击Stacks->New Stack->Connectivity -> UART(r_sci_uart)。

在这里插入图片描述

UART属性配置

在这里插入图片描述

设置e2studio堆栈

printf函数通常需要设置堆栈大小。这是因为printf函数在运行时需要使用栈空间来存储临时变量和函数调用信息。如果堆栈大小不足,可能会导致程序崩溃或不可预期的行为。
printf函数使用了可变参数列表,它会在调用时使用栈来存储参数,在函数调用结束时再清除参数,这需要足够的栈空间。另外printf也会使用一些临时变量,如果栈空间不足,会导致程序崩溃。
因此,为了避免这类问题,应该根据程序的需求来合理设置堆栈大小。

在这里插入图片描述

e2studio的重定向printf设置

在这里插入图片描述

在嵌入式系统的开发中,尤其是在使用GNU编译器集合(GCC)时,–specs 参数用于指定链接时使用的系统规格(specs)文件。这些规格文件控制了编译器和链接器的行为,尤其是关于系统库和启动代码的链接。–specs=rdimon.specs 和 --specs=nosys.specs 是两种常见的规格文件,它们用于不同的场景。
–specs=rdimon.specs
用途: 这个选项用于链接“Redlib”库,这是为裸机(bare-metal)和半主机(semihosting)环境设计的C库的一个变体。半主机环境是一种特殊的运行模式,允许嵌入式程序通过宿主机(如开发PC)的调试器进行输入输出操作。
应用场景: 当你需要在没有完整操作系统的环境中运行程序,但同时需要使用调试器来处理输入输出(例如打印到宿主机的终端),这个选项非常有用。
特点: 它提供了一些基本的系统调用,通过调试接口与宿主机通信。
–specs=nosys.specs
用途: 这个选项链接了一个非常基本的系统库,这个库不提供任何系统服务的实现。
应用场景: 适用于完全的裸机程序,其中程序不执行任何操作系统调用,比如不进行文件操作或者系统级输入输出。
特点: 这是一个更“裸”的环境,没有任何操作系统支持。使用这个规格文件,程序不期望有操作系统层面的任何支持。
如果你的程序需要与宿主机进行交互(如在开发期间的调试),并且通过调试器进行基本的输入输出操作,则使用 --specs=rdimon.specs。
如果你的程序是完全独立的,不需要任何形式的操作系统服务,包括不进行任何系统级的输入输出,则使用 --specs=nosys.specs。

在这里插入图片描述

R_SCI_UART_Open()函数原型

在这里插入图片描述

故可以用 R_SCI_UART_Open()函数进行配置,开启和初始化UART。

    /* Open the transfer instance with initial configuration. */
    err = R_SCI_UART_Open(&g_uart9_ctrl, &g_uart9_cfg);
    assert(FSP_SUCCESS == err);
    printf("hello world!\n");

回调函数user_uart_callback ()

当数据发送的时候,可以查看UART_EVENT_TX_COMPLETE来判断是否发送完毕。

在这里插入图片描述

在这里插入图片描述

可以检查检查 “p_args” 结构体中的 “event” 字段的值是否等于 “UART_EVENT_TX_COMPLETE”。如果条件为真,那么 if 语句后面的代码块将会执行。

fsp_err_t err = FSP_SUCCESS;
volatile bool uart_send_complete_flag = false;
void user_uart_callback (uart_callback_args_t * p_args)
{
    if(p_args->event == UART_EVENT_TX_COMPLETE)
    {
        uart_send_complete_flag = true;
    }
}

printf输出重定向到串口

打印最常用的方法是printf,所以要解决的问题是将printf的输出重定向到串口,然后通过串口将数据发送出去。
注意一定要加上头文件#include <stdio.h>

#ifdef __GNUC__                                 //串口重定向
    #define PUTCHAR_PROTOTYPE int __io_putchar(int ch)
#else
    
#endif


PUTCHAR_PROTOTYPE
{
        err = R_SCI_UART_Write(&g_uart9_ctrl, (uint8_t *)&ch, 1);
        if(FSP_SUCCESS != err) __BKPT();
        while(uart_send_complete_flag == false){}
        uart_send_complete_flag = false;
        return ch;
}

int _write(int fd,char *pBuffer,int size)
{
    for(int i=0;i<size;i++)
    {
        __io_putchar(*pBuffer++);
    }
    return size;
}

RTC配置

点击Stacks->New Stack->Timers -> Realtime Clock(r_rtc_c)。

在这里插入图片描述

RTC属性配置

在这里插入图片描述

其中LOCO为内部低速时钟,需要准确定时还是需要外部低速晶振Sub-clock。

在这里插入图片描述

在这里插入图片描述

内部低速晶振的偏差过大,不如外置低速晶振。

在这里插入图片描述

设定时间

在启动RTC后,需要为其设定当前时间。您可以使用R_RTC_CalendarTimeSet(&g_rtc0_ctrl, &set_time);函数来实现这一目标。具体的时间参数可以通过修改set_time变量来调整。

在这里插入图片描述

//RTC变量
/* rtc_time_t is an alias for the C Standard time.h struct 'tm' */
rtc_time_t set_time =
{
    .tm_sec  = 50,      /* 秒,范围从 0 到 59 */
    .tm_min  = 59,      /* 分,范围从 0 到 59 */
    .tm_hour = 23,      /* 小时,范围从 0 到 23*/
    .tm_mday = 28,      /* 一月中的第几天,范围从 1 到 31*/
    .tm_mon  = 1,       /* 月份,范围从 0 到 11*/
    .tm_year = 125,     /* 自 1900 起的年数,2025为125*/
    .tm_wday = 5,       /* 一周中的第几天,范围从 0 到 6*/
//    .tm_yday=0,       /* 一年中的第几天,范围从 0 到 365*/
//    .tm_isdst=0;      /* 夏令时*/
};

设定周期性中断

如果您想要使用RTC实现固定延迟中断,可以通过R_RTC_PeriodicIrqRateSet函数来实现。例如,要设置1秒的周期性中断,您可以使用如下代码:
R_RTC_PeriodicIrqRateSet(&g_rtc0_ctrl, RTC_PERIODIC_IRQ_SELECT_1_SECOND);
每次周期性中断产生时,系统将触发回调函数的事件RTC_EVENT_PERIODIC_IRQ。

在这里插入图片描述

设定日历闹钟时间

在启动RTC后,您可以设置日历闹钟时间。通过使用R_RTC_CalendarAlarmSet(&g_rtc0_ctrl, &set_alarm_time);函数,可以设定闹钟时间。具体的时间参数可以通过修改set_alarm_time变量来调整。具体设置方法如下。
在这个示例中,我们仅设置了0点0分进行闹钟触发,而且只在周三触发。

//RTC闹钟变量
rtc_alarm_time_t set_alarm_time=
{
     .time.tm_sec  = 10,      /* 秒,范围从 0 到 59 */
     .time.tm_min  = 30,      /* 分,范围从 0 到 59 */
     .time.tm_hour = 12,      /* 小时,范围从 0 到 23*/
     .time.tm_mday = 1,       /* 一月中的第几天,范围从 1 到 31*/
     .time.tm_mon  = 2,       /* 月份,范围从 0 到 11*/
     .time.tm_year = 125,     /* 自 1900 起的年数,2025为125*/
     .time.tm_wday = 6,       /* 一周中的第几天,范围从 0 到 6*/

     .sec_match        =  1,
     .min_match        =  0,
     .hour_match       =  0,
     .mday_match       =  0,
     .mon_match        =  0,
     .year_match       =  0,
     .dayofweek_match  =  0,
    };

在这里插入图片描述

回调函数

可以触发进入回调函数的事件如下所示,RTC_EVENT_PERIODIC_IRQ为设置的实时性事件,例如1s一次,RTC_EVENT_ALARM_IRQ为闹钟事件。

在这里插入图片描述

//RTC回调函数
volatile bool rtc_flag = 0;//RTC延时1s标志位
volatile bool rtc_alarm_flag = 0;//RTC闹钟
/* Callback function */
void rtc_callback(rtc_callback_args_t *p_args)
{
    /* TODO: add your own code here */
    if(p_args->event == RTC_EVENT_PERIODIC_IRQ)
        rtc_flag=1;
    else if(p_args->event == RTC_EVENT_ALARM_IRQ)
        rtc_alarm_flag=1;
}

R_RTC_Open函数

R_RTC_Open函数可以开启RTC。

在这里插入图片描述

同时在主程序中开启RTC已经设置时间和闹钟。

    /**********************RTC开启***************************************/
    /* Initialize the RTC module*/
    err = R_RTC_Open(&g_rtc0_ctrl, &g_rtc0_cfg);

    /* Handle any errors. This function should be defined by the user. */
    assert(FSP_SUCCESS == err);

    /* Set the RTC clock source. Can be skipped if "Set Source Clock in Open" property is enabled. */
    R_RTC_ClockSourceSet(&g_rtc0_ctrl);
    /* R_RTC_CalendarTimeSet must be called at least once to start the RTC */
    R_RTC_CalendarTimeSet(&g_rtc0_ctrl, &set_time);
    /* Set the periodic interrupt rate to 1 second */
    R_RTC_PeriodicIrqRateSet(&g_rtc0_ctrl, RTC_PERIODIC_IRQ_SELECT_1_SECOND);

    R_RTC_CalendarAlarmSet(&g_rtc0_ctrl, &set_alarm_time);
    uint8_t rtc_second= 0;      //秒
    uint8_t rtc_minute =0;      //分
    uint8_t rtc_hour =0;         //时
    uint8_t rtc_day =0;          //日
    uint8_t rtc_month =0;      //月
    uint16_t rtc_year =0;        //年
    uint8_t rtc_week =0;        //周
    rtc_time_t get_time;

同时在主函数的while循环中添加打印和中断处理,以及当前时间显示。

    while(1)
    {
        if(rtc_flag)
        {
            R_RTC_CalendarTimeGet(&g_rtc0_ctrl, &get_time);//获取RTC计数时间
            rtc_flag=0;
            rtc_second=get_time.tm_sec;//秒
            rtc_minute=get_time.tm_min;//分
            rtc_hour=get_time.tm_hour;//时
            rtc_day=get_time.tm_mday;//日
            rtc_month=get_time.tm_mon;//月
            rtc_year=get_time.tm_year; //年
            rtc_week=get_time.tm_wday;//周
            printf(" %d y %d m %d d %d h %d m %d s %d w\n",rtc_year+1900,rtc_month+1,rtc_day,rtc_hour,rtc_minute,rtc_second,rtc_week);


            }
        if(rtc_alarm_flag)
        {
            rtc_alarm_flag=0;
            printf("/************************Alarm Clock********************************/\n");
            }
        R_BSP_SoftwareDelay(10U, BSP_DELAY_UNITS_MILLISECONDS);
        }

演示效果

设置2月28日,当过了凌晨0点后自动切换为3月1号显示。

在这里插入图片描述

设置每过1s打印一次当前时间,设置过1分钟,在10s时候闹铃。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2311634.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Flink深入浅出之04:时间、水印、TableSQL

深入理解Flink的waterMark的机制、Flink Table和SQL开发 3️⃣ 目标 掌握WaterMark的的原理掌握WaterMark的运用掌握Flink Table和SQL开发 4️⃣ 要点 &#x1f4d6; 1. Flink中的Time概念 对于流式数据处理&#xff0c;最大的特点是数据上具有时间的属性特征 Flink根据时…

MongoDB Compass 使用说明

MongoDB Compass 使用说明 安装工具栏按钮详细介绍Connect(连接)1. New Window&#xff08;新窗口&#xff09;2. Disconnect&#xff08;断开连接&#xff09;3. Import Saved Connections&#xff08;导入保存的连接&#xff09;4. Export Saved Connections&#xff08;导出…

Halcon 算子 一维码检测识别、项目案例

首先我们要明白码的识别思路 把窗口全部关闭读取新的图片图像预处理创建条码模型设置模型参数搜索模型获取条码结果显示条码结果 图像预处理和条码增强 对比度太低&#xff1a; scale_image&#xff08;或使用外部程序scale_image_range&#xff09;,增强图像的对比度图像模糊…

信号完整性基础:高速信号的扩频时钟SSC测试

扩频时钟 SSC 是 Spread Spectrum Clock 的英文缩写&#xff0c;目前很多数字电路芯片都支持 SSC 功能&#xff0c;如&#xff1a;PCIE、USB3.0、SATA 等等。那么扩频时钟是用来做什么的呢&#xff1f; SSC背景&#xff1a; 扩频时钟是出于解决电磁干扰&#xff08;EMI&#…

stm32移植LCD2002驱动

介绍 LCD2002支持20X2个字符串显示&#xff0c;引脚功能和读写时序跟LCD1602都很像 LCD类型&#xff1a;字符点阵 点 阵 数&#xff1a;202 外形尺寸&#xff1a;116.0mm37.0mm&#xff08;长宽&#xff09; 视域尺寸&#xff1a;83.0mm18.6mm 点 距 离&#xff1a;0.05mm…

OpenCV计算摄影学(18)平滑图像中的纹理区域同时保留边缘信息函数textureFlattening()

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 cv::textureFlattening 是 OpenCV 中用于图像处理的一个函数&#xff0c;旨在平滑图像中的纹理区域&#xff0c;同时保留边缘信息。该技术特别适…

“此电脑”中删除WPS云盘方法(百度网盘通用)

&#x1f4e3;此方法适用于卸载WPS云盘后&#xff0c;WPS云盘图标依然在此电脑中显示的问题。 原理&#xff1a;通过注册来进行删除 步骤&#xff1a; WIN键R,打开运行窗口&#xff0c;输入regedit命令&#xff0c;来打开【注册表编辑器】&#xff1b; 从左侧&#xff0c;依…

Agent革命:Manus如何用工作流拆解掀起AI生产力革命

一、现象级产品的诞生背景 2025年3月6日&#xff0c;一款名为Manus的AI产品在技术圈引发地震式传播。其官方测试数据显示&#xff1a;在GAIA基准测试中&#xff0c;基础任务准确率达86.5%&#xff08;接近人类水平&#xff09;&#xff0c;中高级任务完成率突破57%。这标志着A…

四款GIS工具箱软件解析:满足企业多样化空间数据需求

概述 随着地理信息系统&#xff08;GIS&#xff09;在城市规划、环境监测、资源管理等领域的广泛应用&#xff0c;各种GIS工具箱软件不断涌现&#xff0c;为用户提供了强大的数据处理、空间分析和地图制图功能。本文将为大家介绍4款GIS工具箱软件&#xff0c;这些软件各具特色…

After Effects的图钉与关键帧动画

姜 子 博 引言 在数字媒体时代&#xff0c;动态图形和视觉效果在信息传播和表达中扮演着越来越重要的角色。After Effects 作为行业领先的软件&#xff0c;提供了丰富的工具和功能&#xff0c;帮助用户创作出令人惊叹的视觉作品。图钉工具和关键帧动画是 AE 中实现复杂动画效…

SAP DOI EXCEL宏的使用

OAOR里上传EXCEL模版 屏幕初始化PBO创建DOI EXCEL对象&#xff0c;并填充EXCEL内容 *&---------------------------------------------------------------------* *& Module INIT_DOI_DISPLAY_9100 OUTPUT *&--------------------------------------------…

新编大学应用英语综合教程3 U校园全套参考答案

获取全套答案&#xff1a; 链接&#xff1a;https://pan.quark.cn/s/abaa0338724e

高考數學。。。

2024上 具体来说&#xff0c;直线的参数方程可以写为&#xff1a; x1t y−t z1t 二、简答题(本大题共5小题&#xff0c;每小题7分&#xff0c;共35分。) 12.数学学习评价不仅要关注结果评价&#xff0c;也要关注过程评价。简要说明过程评价应关注哪几个方面。…

STM32 子设备通过CAN发送数据到主设备

采集ADC、GPS经纬坐标、温湿度数据、大气压数据通过CAN方式发送给主设备端&#xff0c;帧ID按照如下定义&#xff1a; 我尼玛一个标准帧ID位数据是11位&#xff0c;扩展帧才是111829位&#xff0c;它说最开头的是四位是真类型&#xff0c;并给我如下解释&#xff1a; 它把帧的定…

HCIA-IP路由动态-RIP

一、概念 动态路由是指路由器通过运行动态路由协议&#xff08;RIP、OSPF等&#xff09;&#xff0c;自动学习和发现网络中的路由信息。路由器之间通过交换路由协议数据包&#xff0c;互相通告自己所知道的网络信息&#xff0c;从而构建和更新路由表。 二、RIP(路由信息协议)…

CentOS7离线部署安装docker和docker-compose

CentOS7离线部署安装docker和docker-compose 安装包准备 docker下载地址、docker-compose下载地址 docker和docker-compose版本对应关系 注&#xff1a;本次安装部署选择的版本是 docker&#xff1a;docker-28.0.1.tgzdocker-compose&#xff1a;docker-compose-linux-x86_6…

Core Speech Kit(基础语音服务)

文章目录 一、Core Speech Kit简介场景介绍约束与限制二、文本转语音1. 场景介绍2. 约束与限制3. 开发步骤4. 设置播报策略设置数字播报策略插入静音停顿指定汉字发音5. 开发实例三、语音识别约束与限制开发步骤开发实例一、Core Speech Kit简介 Core Speech Kit(基础语音服务…

配置 Thunderbird 以使用 QQ 邮箱

配置 Thunderbird 以使用 QQ 邮箱 本片文章的操作系统为 windws 10 &#xff0c;thunder bird 客户端版本为 128.7.1esr(64位)。注意到其他文章的图片中 thunder bird 的 ui 界面和我这个不一样&#xff0c;导致看起来不太方便&#xff0c;所以这里写一篇博客。不同版本的 thu…

如何使用MyBatis进行多表查询

前言 在实际开发中&#xff0c;对数据库的操作通常会涉及多张表&#xff0c;MyBatis提供了关联映射&#xff0c;这些关联映射可以很好地处理表与表&#xff0c;对象与对象之间的的关联关系。 一对一查询 步骤&#xff1a; 先确定表的一对一关系确定好实体类&#xff0c;添加关…

第六课:数据存储三剑客:CSV/JSON/MySQL

在Python的数据存储与处理领域&#xff0c;CSV、JSON和MySQL被广大开发者誉为“数据存储三剑客”。它们各自在不同的场景下发挥着重要作用&#xff0c;无论是简单的数据交换、轻量级的数据存储&#xff0c;还是复杂的关系型数据库管理&#xff0c;都能找到它们的身影。本文将详…