贪心算法一

news2025/3/9 8:29:12

> 作者:დ旧言~
> 座右铭:松树千年终是朽,槿花一日自为荣。

> 目标:了解什么是贪心算法,并且掌握贪心算法。

> 毒鸡汤:有些事情,总是不明白,所以我不会坚持。早安!

> 专栏选自:贪心算法_დ旧言~的博客-CSDN博客

> 望小伙伴们点赞👍收藏✨加关注哟💕💕

一、算法讲解

贪心算法的定义:

贪心算法是指在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,只做出在某种意义上的局部最优解。贪心算法不是对所有问题都能得到整体最优解,关键是贪心策略的选择,选择的贪心策略必须具备无后效性,即某个状态以前的过程不会影响以后的状态,只与当前状态有关。

解题的一般步骤是:

  1. 建立数学模型来描述问题;
  2. 把求解的问题分成若干个子问题;
  3. 对每一子问题求解,得到子问题的局部最优解;
  4. 把子问题的局部最优解合成原来问题的一个解。

如果大家比较了解动态规划,就会发现它们之间的相似之处。最优解问题大部分都可以拆分成一个个的子问题,把解空间的遍历视作对子问题树的遍历,则以某种形式对树整个的遍历一遍就可以求出最优解,大部分情况下这是不可行的。贪心算法和动态规划本质上是对子问题树的一种修剪,两种算法要求问题都具有的一个性质就是子问题最优性(组成最优解的每一个子问题的解,对于这个子问题本身肯定也是最优的)。

动态规划方法代表了这一类问题的一般解法,我们自底向上构造子问题的解,对每一个子树的根,求出下面每一个叶子的值,并且以其中的最优值作为自身的值,其它的值舍弃。而贪心算法是动态规划方法的一个特例,可以证明每一个子树的根的值不取决于下面叶子的值,而只取决于当前问题的状况。换句话说,不需要知道一个节点所有子树的情况,就可以求出这个节点的值。由于贪心算法的这个特性,它对解空间树的遍历不需要自底向上,而只需要自根开始,选择最优的路,一直走到底就可以了。

二、算法习题


2.1、第一题

题目链接:860. 柠檬水找零 - 力扣(LeetCode)

题目描述:

算法思路:

a. 遇到 5 元钱,直接收下;

b. 遇到 10 元钱,找零 5 元钱之后,收下;

c. 遇到 20 元钱:

  1. 先尝试凑 10 + 5 的组合;
  2. 如果凑不出来,拼凑 5 + 5 + 5 的组合;

代码呈现:

class Solution {
public:
    bool lemonadeChange(vector<int>& bills) 
    {
        int five = 0, ten = 0;
        for (auto x : bills) 
        {
            if (x == 5)
                five++;       // 5 元:直接收下
            else if (x == 10) // 10 元:找零 5 元
            {
                if (five == 0)
                    return false;
                five--;
                ten++;
            } else // 20 元:分情况讨论
            {
                if (ten && five) // 贪⼼
                {
                    ten--;
                    five--;
                } else if (five >= 3) {
                    five -= 3;
                } else
                    return false;
            }
        }
        return true;
    }
};

2.2、第二题

题目链接:2208. 将数组和减半的最少操作次数 - 力扣(LeetCode)

题目描述:

算法思路:

  1. 每次挑选出「当前」数组中「最⼤」的数,然后「减半」;
  2. 直到数组和减少到⾄少⼀半为⽌。

为了「快速」挑选出数组中最⼤的数,我们可以利⽤「堆」这个数据结构。

代码呈现:

class Solution {
public:
    int halveArray(vector<int>& nums) 
    {
        priority_queue<double> heap; // 创建⼀个⼤根堆
        double sum = 0.0;
        for (int x : nums) // 把元素都丢进堆中,并求出累加和
        {
            heap.push(x);
            sum += x;
        }
        sum /= 2.0; // 先算出⽬标和
        int count = 0;
        while (sum > 0) // 依次取出堆顶元素减半,直到减到之前的⼀半以下
        {
            double t = heap.top() / 2.0;
            heap.pop();
            sum -= t;
            count++;
            heap.push(t);
        }
        return count;
    }
};

2.3、第三题

题目链接:179. 最大数 - 力扣(LeetCode)

题目描述:

算法思路:

可以先优化:

将所有的数字当成字符串处理,那么两个数字之间的拼接操作以及⽐较操作就会很⽅便。

贪⼼策略:

按照题⽬的要求,重新定义⼀个新的排序规则,然后排序即可。

排序规则:

  1. 「A 拼接 B」 ⼤于 「B 拼接 A」,那么 A 在前,B 在后;
  2.  「A 拼接 B」 等于 「B 拼接 A」,那么 A B 的顺序⽆所谓;
  3. 「A 拼接 B」 ⼩于 「B 拼接 A」,那么 B 在前,A 在后

代码呈现:

class Solution {
public:
    string largestNumber(vector<int>& nums) 
    {
        // 优化:把所有的数转化成字符串
        vector<string> strs;
        for (int x : nums)
            strs.push_back(to_string(x));
        // 排序
        sort(strs.begin(), strs.end(), [](const string& s1, const string& s2) {
            return s1 + s2 > s2 + s1;
        });
        // 提取结果
        string ret;
        for (auto& s : strs)
            ret += s;
        if (ret[0] == '0')
            return "0";
        return ret;
    }
};

2.4、第四题

题目链接:376. 摆动序列 - 力扣(LeetCode)

题目描述:

算法思路:

对于某⼀个位置来说:

  • 如果接下来呈现上升趋势的话,我们让其上升到波峰的位置;
  • 如果接下来呈现下降趋势的话,我们让其下降到波⾕的位置。
  • 因此,如果把整个数组放在「折线图」中,我们统计出所有的波峰以及波⾕的个数即可

代码呈现:

class Solution {
public:
    int wiggleMaxLength(vector<int>& nums) 
    {
        int n = nums.size();
        if (n < 2)
            return n;
        int ret = 0, left = 0;
        for (int i = 0; i < n - 1; i++) 
        {
            int right = nums[i + 1] - nums[i]; // 计算接下来的趋势
            if (right == 0)
                continue; // 如果⽔平,直接跳过
            if (right * left <= 0)
                ret++; // 累加波峰或者波⾕
            left = right;
        }
        return ret + 1;
    }
};

2.5、第五题

题目链接:300. 最长递增子序列 - 力扣(LeetCode)

题目描述:

算法思路:

  • 我们在考虑最⻓递增⼦序列的⻓度的时候,其实并不关⼼这个序列⻓什么样⼦,我们只是关⼼最后⼀个元素是谁。这样新来⼀个元素之后,我们就可以判断是否可以拼接到它的后⾯。
  • 因此,我们可以创建⼀个数组,统计⻓度为 x 的递增⼦序列中,最后⼀个元素是谁。为了尽可能让这个序列更⻓,我们仅需统计⻓度为 x 的所有递增序列中最后⼀个元素的「最⼩值」。
  • 统计的过程中发现,数组中的数呈现「递增」趋势,因此可以使⽤「⼆分」来查找插⼊位置。

代码呈现:

class Solution {
public:
    int lengthOfLIS(vector<int>& nums) 
    {
        int n = nums.size();
        vector<int> ret;
        ret.push_back(nums[0]);
        for (int i = 1; i < n; i++) 
        {
            if (nums[i] > ret.back()) // 如果能接在最后⼀个元素后⾯,直接放
            {
                ret.push_back(nums[i]);
            } else {
                // ⼆分插⼊位置
                int left = 0, right = ret.size() - 1;
                while (left < right) {
                    int mid = (left + right) >> 1;
                    if (ret[mid] < nums[i])
                        left = mid + 1;
                    else
                        right = mid;
                }
                ret[left] = nums[i]; // 放在 left 位置上
            }
        }
        return ret.size();
    }
};

2.6、第六题

题目链接:334. 递增的三元子序列 - 力扣(LeetCode)

题目描述:

算法思路:

不⽤⼀个数组存数据,仅需两个变量即可。也不⽤⼆分插⼊位置,仅需两次⽐较就可以找到插⼊位
置。

代码呈现:

class Solution {
public : bool increasingTriplet(vector<int>& nums) 
{
        int a = nums[0], b = INT_MAX;
        for (int i = 1; i < nums.size(); i++) 
        {
            if (nums[i] > b)
                return true;
            else if (nums[i] > a)
                b = nums[i];
            else
                a = nums[i];
        }
        return false;
    }
};

三、结束语 

今天内容就到这里啦,时间过得很快,大家沉下心来好好学习,会有一定的收获的,大家多多坚持,嘻嘻,成功路上注定孤独,因为坚持的人不多。那请大家举起自己的小手给博主一键三连,有你们的支持是我最大的动力💞💞💞,回见。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2310955.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

计算机毕业设计Python+DeepSeek-R1大模型微博的话题博文及用户画像分析系统 微博舆情可视化(源码+ 文档+PPT+讲解)

温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 作者简介&#xff1a;Java领…

Secret Cow Code S

归纳编程学习的感悟, 记录奋斗路上的点滴, 希望能帮到一样刻苦的你! 如有不足欢迎指正! 共同学习交流! 🌎欢迎各位→点赞 👍+ 收藏⭐ + 留言​📝 既然选择了远方,当不负青春,砥砺前行! 题目描述 奶牛们正在实验秘密代码,并设计了一种方法用于生成无限长度的字符…

MyBatis - XML CRUD 其他查询

1. XML 配置文件 使用 MyBatis 操作数据库的方式有两种: 注解 (在注解中定义 SQL 语句)XML 配置文件 (在 XML 文件中定义 SQL 语句) 在上一篇博客中, 已经讲解了如何使用注解操作数据库, 本篇文章来讲解如何使用 XML 进行 MyBatis 开发. 使用 XML 的步骤, 和使用注解的步骤…

牛客python蓝桥杯11-32(自用)

11 import os import sysdef huiwen(str):length len(str)# if length 0:# return -1result []for i in range(length-1): # 0 - length-2for j in range(i2,length1):# 取出从索引 i 到 j-1 的子串s str[i:j]# 正序倒序if s s[::-1]:result.append(len(s))if result…

rabbitmq版本升级并部署高可用

RabbitMQ版本升级 先检查是否已经安装rabbitmq rpm -qa|grep rabbitmq|wc -l //如果结果是0&#xff0c;表示没有安装 rpm -e --nodeps $(rpm -qa|grep rabbitmq) //如安装了&#xff0c;则进行卸载 先检查是否已经安装erlang rpm -qa|grep erlang|wc -l //如果结果…

数据集路径出错.yaml‘ images not found , missing path

方法一&#xff1a;删除settings.yaml 方法二&#xff1a;dataset_name.yaml改用绝对路径&#xff0c;如最后一张图 错误分析&#xff1a; dataset_name.yaml中的path的路径仅支持绝对路径&#xff0c;写相对路径就会搜索不到&#xff0c;使用settings.json中的路径&#xff0…

win32汇编环境,对话框中使用树形视图示例二

;运行效果 ;win32汇编环境,对话框中使用树形视图示例二 ;得到树形视图控件Treeview的全路径字符串,这里的方法是由子项向父项挨个找的算法找齐路径 ;直接抄进RadAsm可编译运行。重要部分加备注。 ;下面为asm文件 ;>>>>>>>>>>>>>>&g…

【连珠云弈】网页五子棋版项目测试报告

目录 一、项目背景 1.1、项目起源 1.2、市场需求 1.3、项目目标 二、项目功能 2.1 用户管理功能 2.2 游戏对战功能 三、测试报告 3.1.功能测试 ​编辑 3.1.1注册功能测试 解决bug&#xff1a; 测试总结&#xff1a; 3.1.2登录功能测试 测试总结&#xff1a; 3.…

OpenCV计算摄影学(15)无缝克隆(Seamless Cloning)调整图像颜色的函数colorChange()

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 cv::colorChange 是 OpenCV 中用于调整图像颜色的函数。它允许你通过乘以不同的系数来独立地改变输入图像中红色、绿色和蓝色通道的强度&#xf…

AI视频领域的DeepSeek—阿里万相2.1图生视频

让我们一同深入探索万相 2.1 &#xff0c;本文不仅介绍其文生图和文生视频的使用秘籍&#xff0c;还将手把手教你如何利用它实现图生视频。 如下为生成的视频效果&#xff08;我录制的GIF动图&#xff09; 如下为输入的图片 目录 1.阿里巴巴全面开源旗下视频生成模型万相2.1模…

用Python分割并高效处理PDF大文件

在处理大型PDF文件时&#xff0c;将它们分解成更小、更易于管理的块通常是有益的。这个过程称为分区&#xff0c;它可以提高处理效率&#xff0c;并使分析或操作文档变得更容易。在本文中&#xff0c;我们将讨论如何使用Python和为Unstructured.io库将PDF文件划分为更小的部分。…

RabbitMQ知识点

1.为什么需要消息队列&#xff1f; RabbitMQ体系结构 操作001&#xff1a;RabbitMQ安装 二、安装 # 拉取镜像 docker pull rabbitmq:3.13-management ​ # -d 参数&#xff1a;后台运行 Docker 容器 # --name 参数&#xff1a;设置容器名称 # -p 参数&#xff1a;映射端口号&…

2025-03-06 学习记录--C/C++-PTA 习题6-6 使用函数输出一个整数的逆序数

合抱之木&#xff0c;生于毫末&#xff1b;九层之台&#xff0c;起于累土&#xff1b;千里之行&#xff0c;始于足下。&#x1f4aa;&#x1f3fb; 一、题目描述 ⭐️ 二、代码&#xff08;C语言&#xff09;⭐️ #include <stdio.h>int reverse( int number );int main…

力扣132. 分割回文串 II

力扣132. 分割回文串 II 题目 题目解析及思路 题目要求返回将s切割成若干回文串的最少切割次数 对于子串s[j...i]&#xff0c;若为回文串&#xff0c;则问题变为求s[0...j]的最少切割次数 因此可以考虑动态规划 对于问题s[j...i]是否为回文串&#xff0c;若s[i] s[j]则问…

调研:如何实现智能分析助手(Agent)(AutoCoder、FastGPT、AutoGen、DataCopilot)

文章目录 调研&#xff1a;如何实现智能分析助手&#xff08;Agent&#xff09;&#xff08;AutoCoder、FastGPT、AutoGen、DataCopilot&#xff09;一、交互流程二、数据流程三、架构分类四、开源产品4.1 AutoCoder&#xff08;知识库变体&#xff09;4.2 FastGPT&#xff08;…

学习使用ESP8266进行MQTT通信并在网页上可视化显示

目录 一、工具 二、 流程 三、代码实现 设置MQTT服务器地址 设置服务器和端口号 连接MQTT服务器并订阅话题 回调处理函数 发布数据到话题 四、调试软件使用 打开MQTTx 添加话题 五、网页使用 一、工具 arduino ide esp8266/32单片机 lot物联网网页 MQTTx软件或者m…

mysql进阶(三)

MySQL架构和存储引擎 1. MySQL架构 MySQL8.0服务器是由连接池、服务管理⼯具和公共组件、NoSQL接⼝、SQL接⼝、解析器、优化 器、缓存、存储引擎、⽂件系统组成。MySQL还为各种编程语⾔提供了⼀套⽤于外部程序访问服务器 的连接器。整体架构图如下所⽰&#xff1a; 2. 连接层 …

【MYSQL数据库异常处理】执行SQL语句报超时异常

MYSQL执行SQL语句异常&#xff1a;The last packet successfully received from the server was 100,107 milliseconds ago. The last packet sent successfully to the server was 100,101 milliseconds ago. 这个错误表明 MySQL 服务器与 JDBC 连接之间的通信超时了。通常由…

深入理解三色标记、CMS、G1垃圾回收器

三色标记算法 简介 三色标记算法是一种常见的垃圾收集的标记算法&#xff0c;属于根可达算法的一个分支&#xff0c;垃圾收集器CMS&#xff0c;G1在标记垃圾过程中就使用该算法 三色标记法&#xff08;Tri-color Marking&#xff09;是垃圾回收中用于并发标记存活对象的核心算…

60页PDF | 四川电信数据湖及数据中台实施方案!(附下载)

一、前言 这份报告是关于四川电信数据湖与数据中台实施方案的详细规划。报告从数据驱动、事件管理、数据湖构建、数据资产管理和数据治理等多个方面展开&#xff0c;介绍了如何通过数据湖与数据中台的建设&#xff0c;实现数据的高效采集、存储、分析与共享&#xff0c;提升数…