机器学习数学通关指南——泰勒公式

news2025/2/26 15:55:20

前言

本文隶属于专栏《机器学习数学通关指南》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!

本专栏目录结构和参考文献请见《机器学习数学通关指南》


正文

一句话总结

泰勒公式是用多项式函数逐步逼近复杂函数的工具,其核心思想是:用某一点的函数值及各阶导数信息,构建一个多项式,像“放大镜”一样,在局部无限接近原函数


直观理解方式

  1. 以直代曲 → 逐步修匀

    • 一阶泰勒公式就是常用的“以直代曲”(例如用切线近似函数)。
    • 加入高阶项后,逐渐加入“弯曲校正项”,使得多项式在更广范围内贴合原函数。
    • 类比:调手机相机的“放大镜”功能——起始是模糊的直线轮廓(低阶近似),逐步放大细节后,曲线形状清晰可见(高阶近似)。
  2. 低阶盯局部,高阶管全局

    • 低阶项(如一次项、二次项):主导当前点附近的形状。
    • 高阶项(如三次及以上):在远离当前点的区域逐渐起主要作用(例如y = x³会比y = x²x > 1时增长更快)。
    • 示例
      • 在原点展开的,低阶项(1 + x)在靠近0时与真实值接近,高阶项(x²/2! + x³/3! + ...)逐渐修正远端的误差
      • sin x的泰勒展开通过奇次项(x³、x⁵)交替抵消,精确模拟波动特性

关键要点

1. 阶数是精度的标尺
  • 阶数越高,多项式逼近的范围越广、精度越高。
  • 例子对比
    • 1 + x近似(1阶),只能在x → 0时勉强可用。
    • 1 + x + x²/2! + x³/3!近似(3阶),在x = 1附近误差已小于0.01。
2. 阶乘的作用:压制高阶幂的爆炸增长
  • 问题:x⁹比x²增长快得多,直接相加会导致高阶项完全主导多项式。
  • 解决方法:用阶乘n!作为分母,均衡幂函数的增长速度(例如x³/3!中,3! = 6会显著减缓x³的增速)。
  • 说明
    • 未加阶乘时,高阶项会过早压制低阶项(如x⁹完全覆盖x²的影响)。
    • 加入阶乘后,低阶项先起主导作用,高阶项逐渐接管更远的区域
3. 数学形式与物理意义
  • 单变量公式
    f ( x ) = ∑ k = 0 n f ( k ) ( x 0 ) k ! ( x − x 0 ) k + R n ( x ) f(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!}(x - x_0)^k + R_n(x) f(x)=k=0nk!f(k)(x0)(xx0)k+Rn(x)
    其中R_n(x)为余项,表示误差(余项越小,逼近越精确)。
  • 物理意义
    • 导数各阶信息 = 函数当前位置(0阶)、瞬时变化方向(1阶)、弯曲程度(2阶)等。
    • 综合所有导数信息即可预测函数未来走势

应用场景

  1. 工程计算:用多项式替换复杂函数(如sin x)快速计算近似值。
  2. 机器学习:函数的局部近似用于优化算法(如牛顿法)。
  3. 物理建模:描述微小振动、波动时的高精度展开(如谐振子方程)。

与微分中值的区别

  • 泰勒公式:提供全局的逐阶近似多项式,反映各阶导数的综合贡献。
  • 微分中值定理:仅保证某一点的存在性(如梯度方向的最速上升)。
  • 联系:泰勒公式的一阶展开对应微分中值的局部线性近似。

一句话总结

泰勒公式是用多项式“镜头”逐步聚焦函数的工具——阶数决定了精度,阶乘平衡了增长,展开式中的每一项都是导数信息的精确调用,从而在局部和全局间架起桥梁。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2306446.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

JNA基础使用,调用C++返回结构体

C端 test.h文件 #pragma oncestruct RespInfo {char* path;char* content;int statusCode; };extern "C" { DLL_EXPORT void readInfo(char* path, RespInfo* respInfo); }test.cpp文件 #include "test.h"void readInfo(char* path, RespInfo* respInfo…

解锁养生密码,拥抱健康生活

在快节奏的现代生活中,养生不再是一种选择,而是我们保持活力、提升生活质量的关键。它不是什么高深莫测的学问,而是一系列融入日常的简单习惯,每一个习惯都在为我们的健康加分。 早晨,当第一缕阳光洒进窗户&#xff0c…

OpenCV(6):图像边缘检测

图像边缘检测是计算机视觉和图像处理中的一项基本任务,它用于识别图像中亮度变化明显的区域,这些区域通常对应于物体的边界。是 OpenCV 中常用的边缘检测函数及其说明: 函数算法说明适用场景cv2.Canny()Canny 边缘检测多阶段算法,检测效果较…

spark的一些指令

一,复制和移动 1、复制文件 格式:cp 源文件 目标文件 示例:把file1.txt 复制一份得到file2.txt 。那么对应的命令就是:cp file1.txt file2.txt 2、复制目录 格式:cp -r 源文件 目标文件夹 示例:把目…

OpenHarmony全球化子系统

OpenHarmony全球化子系统 简介系统架构目录相关仓 简介 当OpenHarmony系统/应用在全球不同区域使用时,系统/应用需要满足不同市场用户关于语言、文化习俗的需求。全球化子系统提供支持多语言、多文化的能力,包括: 资源管理能力 根据设备类…

创建私人阿里云docker镜像仓库

步骤1、登录阿里云 阿里云创建私人镜像仓库地址:容器镜像服务 步骤2、创建个人实例 步骤:【实例列表】 》【创建个人实例】 》【设置Registry登录密码】 步骤3、创建命名空间 步骤:【个人实例】》【命名空间】》【创建命名空间】 注意&am…

【LLM】本地部署LLM大语言模型+可视化交互聊天,附常见本地部署硬件要求(以Ollama+OpenWebUI部署DeepSeekR1为例)

【LLM】本地部署LLM大语言模型可视化交互聊天,附常见本地部署硬件要求(以OllamaOpenWebUI部署DeepSeekR1为例) 文章目录 1、本地部署LLM(以Ollama为例)2、本地LLM交互界面(以OpenWebUI为例)3、本…

LLM之论文阅读——Context Size对RAG的影响

前言 RAG 系统已经在多个行业中得到广泛应用,尤其是在企业内部文档查询等场景中。尽管 RAG 系统的应用日益广泛,关于其最佳配置的研究却相对缺乏,特别是在上下文大小、基础 LLM 选择以及检索方法等方面。 论文原文: On the Influence of Co…

2025-02-25 学习记录--C/C++-用C语言实现删除字符串中的子串

用C语言实现删除字符串中的子串 在C语言中&#xff0c;你可以使用strstr函数来查找子串&#xff0c;然后用memmove或strcpy来覆盖或删除找到的子串。 一、举例 &#x1f430; #include <stdio.h> // 包含标准输入输出库&#xff0c;用于使用 printf 函数 #include <s…

【Linux】Ubuntu服务器的安装和配置管理

ℹ️大家好&#xff0c;我是练小杰&#xff0c;今天周二了&#xff0c;哪吒的票房已经到了138亿了&#xff0c;饺子导演好样的&#xff01;&#xff01;每个人的成功都不是必然的&#xff0c;坚信自己现在做的事是可以的&#xff01;&#xff01;&#x1f606; 本文是有关Ubunt…

2.3做logstash实验

收集apache日志输出到es 在真实服务器安装logstash&#xff0c;httpd systemctl start httpd echo 666 > /var/www/html/index.html cat /usr/local/logstash/vendor/bundle/jruby/2.3.0/gems/logstash-patterns-core-4.1.2/patterns/httpd #系统内置变量 cd /usr/local/…

pandas读取数据

pandas读取数据 导入需要的包 import pandas as pd import numpy as np import warnings import oswarnings.filterwarnings(ignore)读取纯文本文件 pd.read_csv 使用默认的标题行、逗号分隔符 import pandas as pd fpath "./datas/ml-latest-small/ratings.csv" 使…

ReentrantLock 用法与源码剖析笔记

&#x1f4d2; ReentrantLock 用法与源码剖析笔记 &#x1f680; 一、ReentrantLock 核心特性 &#x1f504; 可重入性&#xff1a;同一线程可重复获取锁&#xff08;最大递归次数为 Integer.MAX_VALUE&#xff09;&#x1f527; 公平性&#xff1a;支持公平锁&#xff08;按等…

java进阶专栏的学习指南

学习指南 java类和对象java内部类和常用类javaIO流 java类和对象 类和对象 java内部类和常用类 java内部类精讲Object类包装类的认识String类、BigDecimal类初探Date类、Calendar类、SimpleDateFormat类的认识java Random类、File类、System类初识 javaIO流 java IO流【…

架构思维:架构的演进之路

文章目录 引言为什么架构思维如此重要架构师的特点软件架构的知识体系如何提升架构思维大型互联网系统架构的演进之路一、大型互联网系统的特点二、系统处理能力提升的两种途径三、大型互联网系统架构演化过程四、总结 引言 在软件开发行业中&#xff0c;有很多技术人可能会问…

vue3:vue3项目安装并引入Element-plus

一、安装Element-plus 1、安装语句位置 安装 | Element Plushttps://element-plus.org/zh-CN/guide/installation.html根据所需进行安装&#xff0c;这里使用npm包 2、找到项目位置 找到项目位置&#xff0c;在路径上输入cmd回车打开“运行”窗口 输入安装语句回车完成安装 …

java.2.25

1. 注释 ​ 注释是对代码的解释和说明文字。 Java中的注释分为三种&#xff1a; 单行注释&#xff1a; // 这是单行注释文字多行注释&#xff1a; /* 这是多行注释文字 这是多行注释文字 这是多行注释文字 */ 注意&#xff1a;多行注释不能嵌套使用。文档注释&#xff1a;…

VScode 开发

目录 安装 VS Code 创建一个 Python 代码文件 安装 VS Code VSCode&#xff08;全称&#xff1a;Visual Studio Code&#xff09;是一款由微软开发且跨平台的免费源代码编辑器&#xff0c;VSCode 开发环境非常简单易用。 VSCode 安装也很简单&#xff0c;打开官网 Visual S…

A Large Recurrent Action Model: xLSTM Enables Fast Inference for Robotics Tasks

奥地利林茨约翰开普勒大学机器学习研究所 ELLIS 小组&#xff0c;LIT 人工智能实验室奥地利林茨 NXAI 有限公司谷歌 DeepMind米拉 - 魁北克人工智能研究所 摘要 近年来&#xff0c;强化学习&#xff08;Reinforcement Learning, RL&#xff09;领域出现了一种趋势&#xff0c;…