用deepseek学大模型08-卷积神经网络(CNN)

news2025/2/21 6:01:32

yuanbao.tencent.com
从入门到精通卷积神经网络(CNN),着重介绍的目标函数,损失函数,梯度下降 标量和矩阵形式的数学推导,pytorch真实能跑的代码案例以及模型,数据,预测结果的可视化展示, 模型应用场景和优缺点,及如何改进解决及改进方法数据推导。

一、目标函数与损失函数数学推导

1. 均方误差(MSE)

标量形式:
E ( w ) = 1 2 ∑ i = 1 N ( y i − y ^ i ) 2 E(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^N (y_i - \hat{y}_i)^2 E(w)=21i=1N(yiy^i)2
矩阵形式:
E ( W ) = 1 2 ( Y − Y ^ ) T ( Y − Y ^ ) E(\mathbf{W}) = \frac{1}{2} (\mathbf{Y} - \mathbf{\hat{Y}})^T (\mathbf{Y} - \mathbf{\hat{Y}}) E(W)=21(YY^)T(YY^)
其中 Y ^ = W X + b \mathbf{\hat{Y}} = \mathbf{WX} + \mathbf{b} Y^=WX+b,适用于回归任务。

2. 交叉熵损失

分类任务公式:
L = − 1 N ∑ i = 1 N ∑ c = 1 C y i , c log ⁡ ( y ^ i , c ) L = -\frac{1}{N} \sum_{i=1}^N \sum_{c=1}^C y_{i,c} \log(\hat{y}_{i,c}) L=N1i=1Nc=1Cyi,clog(y^i,c)
其中 C C C 为类别数, y ^ i , c \hat{y}_{i,c} y^i,c 为 softmax 输出概率。


二、梯度下降的数学推导

标量形式(以 MSE 为例):

∂ E ∂ w j = ∑ i = 1 N ( y i − y ^ i ) ⋅ x i , j \frac{\partial E}{\partial w_j} = \sum_{i=1}^N (y_i - \hat{y}_i) \cdot x_{i,j} wjE=i=1N(yiy^i)xi,j
参数更新:
w j ← w j − η ∂ E ∂ w j w_j \leftarrow w_j - \eta \frac{\partial E}{\partial w_j} wjwjηwjE

矩阵形式(卷积层梯度):

设第 l l l 层卷积核为 W [ l ] \mathbf{W}^{[l]} W[l],反向传播梯度为:
∂ L ∂ W [ l ] = A [ l − 1 ] ∗ ∂ L ∂ Z [ l ] \frac{\partial L}{\partial \mathbf{W}^{[l]}} = \mathbf{A}^{[l-1]} \ast \frac{\partial L}{\partial \mathbf{Z}^{[l]}} W[l]L=A[l1]Z[l]L
其中 ∗ \ast 表示互相关运算, Z [ l ] \mathbf{Z}^{[l]} Z[l] 为卷积输出。


三、PyTorch 代码案例(MNIST 分类)

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
import matplotlib.pyplot as plt

# 数据加载
transform = transforms.Compose([transforms.ToTensor()])
train_data = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
train_loader = torch.utils.data.DataLoader(train_data, batch_size=64, shuffle=True)

# 定义 CNN 模型
class CNN(nn.Module):
    def __init__(self):
        super(CNN, self).__init__()
        self.conv1 = nn.Conv2d(1, 32, kernel_size=3)
        self.pool = nn.MaxPool2d(2, 2)
        self.fc = nn.Linear(32*13*13, 10)
    
    def forward(self, x):
        x = self.pool(torch.relu(self.conv1(x)))  # 输出尺寸: (32, 13, 13)
        x = x.view(-1, 32*13*13)
        x = self.fc(x)
        return x

model = CNN()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)

# 训练循环
losses = []
for epoch in range(5):
    for images, labels in train_loader:
        optimizer.zero_grad()
        outputs = model(images)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
    losses.append(loss.item())
    print(f'Epoch {epoch+1}, Loss: {loss.item():.4f}')

# 可视化训练损失
plt.plot(losses)
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.show()

四、可视化展示

  1. 特征图可视化:使用 torchvision.utils.make_grid 显示卷积层输出。
  2. 预测结果对比:绘制真实标签与预测标签的混淆矩阵。
  3. 训练过程监控:绘制损失和准确率曲线(示例见代码)。

五、应用场景与优缺点

应用场景优缺点
图像分类(ResNet)✅ 自动特征提取;❌ 对旋转/缩放敏感
目标检测(YOLO)✅ 高效定位;❌ 小目标检测困难
医学影像分割(U-Net)✅ 像素级精度;❌ 需要大量标注数据

六、改进方法

  1. 梯度消失问题:使用残差连接(ResNet)。
  2. 感受野限制:引入空洞卷积(Dilated Convolution)。
  3. 计算效率:采用深度可分离卷积(MobileNet)。

数学推导补充(矩阵形式)

设卷积层输入为 X ∈ R H × W × C \mathbf{X} \in \mathbb{R}^{H\times W\times C} XRH×W×C,卷积核 W ∈ R k × k × C × D \mathbf{W} \in \mathbb{R}^{k\times k\times C\times D} WRk×k×C×D,输出特征图 Z \mathbf{Z} Z 的计算为:
Z i , j , d = ∑ c = 1 C ∑ u = − k / 2 k / 2 ∑ v = − k / 2 k / 2 W u , v , c , d ⋅ X i + u , j + v , c \mathbf{Z}_{i,j,d} = \sum_{c=1}^C \sum_{u=-k/2}^{k/2} \sum_{v=-k/2}^{k/2} \mathbf{W}_{u,v,c,d} \cdot \mathbf{X}_{i+u,j+v,c} Zi,j,d=c=1Cu=k/2k/2v=k/2k/2Wu,v,c,dXi+u,j+v,c
反向传播时,梯度计算需展开为矩阵乘法形式。


如需更详细的代码扩展或特定改进方法的推导,请进一步说明需求。

CNN与MLP的深度对比分析


一、核心结构差异
维度CNNMLP
连接方式局部连接 + 权值共享全连接
参数规模参数少(卷积核复用)参数爆炸(每层全连接)
输入结构保留空间维度(H×W×C)必须展平为向量(H×W×C → D)
特征提取自动学习局部到全局的层次特征依赖人工特征工程或隐式全局特征

二、数学本质对比
  1. 卷积运算 vs 矩阵乘法

    • CNN:通过卷积核滑动计算局部特征(稀疏交互
      Z = W ∗ X + b \mathbf{Z} = \mathbf{W} \ast \mathbf{X} + \mathbf{b} Z=WX+b
    • MLP:通过全连接权重矩阵计算全局特征(密集交互
      Z = W T X + b \mathbf{Z} = \mathbf{W}^T \mathbf{X} + \mathbf{b} Z=WTX+b
  2. 反向传播差异

    • CNN梯度计算需考虑感受野叠加,通过转置卷积实现梯度传播
    • MLP梯度直接通过链式法则逐层传递,无空间结构约束

三、性能优势对比
任务类型CNN优势MLP劣势
图像分类✅ 平移不变性(卷积核共享)❌ 需学习重复模式,参数效率低
目标检测✅ 空间特征保留,适合定位❌ 展平破坏空间关系
语义分割✅ 像素级特征关联❌ 无法处理高分辨率输出
参数量对比MNIST任务:约50K参数(CNN)MNIST任务:约800K参数(MLP)

四、代码对比(PyTorch实现)

CNN模型(接上文代码)

# 卷积层定义
self.conv1 = nn.Conv2d(1, 32, kernel_size=3)  # 参数数: 32×1×3×3=288

MLP模型对比

class MLP(nn.Module):
    def __init__(self):
        super(MLP, self).__init__()
        self.fc1 = nn.Linear(28*28, 512)  # 参数数: 784×512=401,408
        self.fc2 = nn.Linear(512, 10)     # 参数数: 512×10=5,120
    def forward(self, x):
        x = x.view(-1, 28*28)
        x = torch.relu(self.fc1(x))
        return self.fc2(x)

参数量对比:CNN模型参数量约为MLP的 1/16(50K vs 800K)


五、本质优势解析
  1. 平移不变性 (Translation Invariance)

    • CNN通过卷积核共享,自动识别目标在不同位置的特征
    • MLP需在不同位置重复学习相同模式,效率低下
  2. 层次特征学习

    • 低级特征 → 边缘/纹理(浅层卷积)
    • 高级特征 → 物体部件/整体(深层卷积)
    • MLP缺乏显式的层次特征提取机制
  3. 参数效率

    • 示例:输入尺寸224×224的RGB图像
      • CNN第一层(3×3卷积,32通道):3×3×3×32 = 864参数
      • MLP第一层(全连接,512节点):224×224×3×512 ≈ 77M参数

六、适用场景选择指南
场景推荐模型原因
图像/视频处理CNN空间特征保留,参数高效
结构化表格数据MLP无空间关联,全连接更直接
时序数据(LSTM替代)MLP/RNNCNN需设计1D卷积,可能不如RNN自然
小样本学习MLPCNN需要大量数据防止过拟合

七、改进方向对比
问题CNN解决方案MLP解决方案
过拟合Dropout, 数据增强L2正则化, 早停
梯度消失残差连接(ResNet)激活函数改进(ReLU)
计算效率深度可分离卷积(MobileNet)网络剪枝, 量化
全局依赖建模自注意力机制(Vision Transformer)增加隐藏层宽度

八、数学视角的差异本质

设输入为 X ∈ R H × W × C \mathbf{X} \in \mathbb{R}^{H\times W\times C} XRH×W×C,两种网络的函数表达能力差异:

  1. CNN函数空间
    F C N N = { f ∣ f ( X ) = ConvBlock ( X ; W ) } \mathcal{F}_{CNN} = \{ f | f(\mathbf{X}) = \text{ConvBlock}(\mathbf{X}; \mathbf{W}) \} FCNN={ff(X)=ConvBlock(X;W)}
    具有平移等变性 f ( Shift ( X ) ) = Shift ( f ( X ) ) f(\text{Shift}(\mathbf{X})) = \text{Shift}(f(\mathbf{X})) f(Shift(X))=Shift(f(X))

  2. MLP函数空间
    F M L P = { f ∣ f ( X ) = W 2 T σ ( W 1 T vec ( X ) ) } \mathcal{F}_{MLP} = \{ f | f(\mathbf{X}) = \mathbf{W}_2^T \sigma(\mathbf{W}_1^T \text{vec}(\mathbf{X})) \} FMLP={ff(X)=W2Tσ(W1Tvec(X))}
    丢失空间结构信息,需从数据中重新学习位置相关性


九、实战建议
  1. 图像任务首选CNN:即使简单任务(如MNIST),CNN在准确率和鲁棒性上显著优于MLP
  2. 混合架构趋势:现代模型常结合两者优势(如CNN提取特征 + MLP分类头)
  3. 计算资源考量:MLP在小型结构化数据上训练更快,CNN需要GPU加速

通过理解这些本质区别,可以更明智地根据任务特性选择模型架构。

卷积核的数学实现与梯度推导详解


一、卷积核的数学形式

卷积核的本质是局部特征提取器,其数学实现可分为单通道和多通道两种情况。


1. 单通道卷积(2D卷积)

输入:单通道特征图 X ∈ R H × W X \in \mathbb{R}^{H \times W} XRH×W
卷积核 K ∈ R k × k K \in \mathbb{R}^{k \times k} KRk×k(假设 k k k 为奇数)
输出:特征图 Z ∈ R ( H − k + 1 ) × ( W − k + 1 ) Z \in \mathbb{R}^{(H-k+1) \times (W-k+1)} ZR(Hk+1)×(Wk+1)

数学表达式
Z i , j = ∑ u = 0 k − 1 ∑ v = 0 k − 1 K u , v ⋅ X i + u , j + v + b Z_{i,j} = \sum_{u=0}^{k-1} \sum_{v=0}^{k-1} K_{u,v} \cdot X_{i+u, j+v} + b Zi,j=u=0k1v=0k1Ku,vXi+u,j+v+b
其中 b b b 为偏置项,输出每个位置的计算对应输入的一个局部区域与核的点积


2. 多通道卷积(3D卷积)

输入:多通道特征图 X ∈ R H × W × C i n X \in \mathbb{R}^{H \times W \times C_{in}} XRH×W×Cin
卷积核 K ∈ R k × k × C i n × C o u t K \in \mathbb{R}^{k \times k \times C_{in} \times C_{out}} KRk×k×Cin×Cout
输出 Z ∈ R ( H − k + 1 ) × ( W − k + 1 ) × C o u t Z \in \mathbb{R}^{(H-k+1) \times (W-k+1) \times C_{out}} ZR(Hk+1)×(Wk+1)×Cout

数学表达式
对每个输出通道 c c c
Z i , j , c = ∑ u = 0 k − 1 ∑ v = 0 k − 1 ∑ d = 1 C i n K u , v , d , c ⋅ X i + u , j + v , d + b c Z_{i,j,c} = \sum_{u=0}^{k-1} \sum_{v=0}^{k-1} \sum_{d=1}^{C_{in}} K_{u,v,d,c} \cdot X_{i+u, j+v, d} + b_c Zi,j,c=u=0k1v=0k1d=1CinKu,v,d,cXi+u,j+v,d+bc
每个输出通道对应一个独立的偏置 b c b_c bc


二、梯度计算推导

以单通道卷积为例,推导卷积核参数的梯度。设损失函数为 L L L,需计算 ∂ L ∂ K u , v \frac{\partial L}{\partial K_{u,v}} Ku,vL


1. 前向传播公式回顾

Z = X ∗ K + b Z = X \ast K + b Z=XK+b
其中 ∗ \ast 表示有效卷积(无padding,stride=1)。


2. 反向传播梯度计算

假设已知上层传递的梯度 ∂ L ∂ Z \frac{\partial L}{\partial Z} ZL,根据链式法则:
∂ L ∂ K u , v = ∑ i = 0 H − k ∑ j = 0 W − k ∂ L ∂ Z i , j ⋅ ∂ Z i , j ∂ K u , v \frac{\partial L}{\partial K_{u,v}} = \sum_{i=0}^{H-k} \sum_{j=0}^{W-k} \frac{\partial L}{\partial Z_{i,j}} \cdot \frac{\partial Z_{i,j}}{\partial K_{u,v}} Ku,vL=i=0Hkj=0WkZi,jLKu,vZi,j

由前向传播公式可得:
∂ Z i , j ∂ K u , v = X i + u , j + v \frac{\partial Z_{i,j}}{\partial K_{u,v}} = X_{i+u, j+v} Ku,vZi,j=Xi+u,j+v

因此:
∂ L ∂ K u , v = ∑ i = 0 H − k ∑ j = 0 W − k ∂ L ∂ Z i , j ⋅ X i + u , j + v \frac{\partial L}{\partial K_{u,v}} = \sum_{i=0}^{H-k} \sum_{j=0}^{W-k} \frac{\partial L}{\partial Z_{i,j}} \cdot X_{i+u, j+v} Ku,vL=i=0Hkj=0WkZi,jLXi+u,j+v

矩阵形式
∂ L ∂ K = X ⋆ ∂ L ∂ Z \frac{\partial L}{\partial K} = X \star \frac{\partial L}{\partial Z} KL=XZL
其中 ⋆ \star 表示**互相关(cross-correlation)**运算。


3. 多通道扩展

对于多通道输入和多个卷积核的情况,梯度计算需按通道累加:
∂ L ∂ K u , v , d , c = ∑ i = 0 H − k ∑ j = 0 W − k ∂ L ∂ Z i , j , c ⋅ X i + u , j + v , d \frac{\partial L}{\partial K_{u,v,d,c}} = \sum_{i=0}^{H-k} \sum_{j=0}^{W-k} \frac{\partial L}{\partial Z_{i,j,c}} \cdot X_{i+u, j+v, d} Ku,v,d,cL=i=0Hkj=0WkZi,j,cLXi+u,j+v,d


三、数学推导可视化

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传
图示说明:梯度计算本质是输入特征图与输出梯度的互相关操作


四、PyTorch代码实现

以下代码展示手动实现卷积前向传播与梯度计算:

import torch

def conv2d_forward(X, K, b, stride=1):
    # X: (H, W), K: (k, k), b: scalar
    k = K.shape[0]
    H, W = X.shape
    out_h = (H - k) // stride + 1
    out_w = (W - k) // stride + 1
    Z = torch.zeros(out_h, out_w)
    for i in range(0, out_h):
        for j in range(0, out_w):
            receptive_field = X[i*stride:i*stride+k, j*stride:j*stride+k]
            Z[i,j] = (receptive_field * K).sum() + b
    return Z

def conv2d_backward(dL_dZ, X, K_shape, stride=1):
    # dL_dZ: 上层梯度, X: 输入, K_shape: 卷积核尺寸
    k = K_shape[0]
    dL_dK = torch.zeros(k, k)
    for u in range(k):
        for v in range(k):
            # 计算每个K[u,v]的梯度
            X_slice = X[u:u+dL_dZ.shape[0]*stride:stride, 
                        v:v+dL_dZ.shape[1]*stride:stride]
            dL_dK[u,v] = (X_slice * dL_dZ).sum()
    return dL_dK

# 测试示例
X = torch.tensor([[1,2,3,4], [5,6,7,8], [9,10,11,12]], dtype=torch.float32)
K = torch.tensor([[1,0], [0,1]], dtype=torch.float32)
b = 0.0

# 前向传播
Z = conv2d_forward(X, K, b, stride=1)
print("Output feature map:\n", Z)

# 假设上层梯度为全1矩阵
dL_dZ = torch.ones_like(Z)
dL_dK = conv2d_backward(dL_dZ, X, K.shape)
print("Gradient of K:\n", dL_dK)

五、关键公式总结
计算类型公式
前向传播 Z i , j = ∑ u , v K u , v X i + u , j + v + b Z_{i,j} = \sum_{u,v} K_{u,v} X_{i+u,j+v} + b Zi,j=u,vKu,vXi+u,j+v+b
核梯度 ∂ L ∂ K u , v = ∑ i , j ∂ L ∂ Z i , j X i + u , j + v \frac{\partial L}{\partial K_{u,v}} = \sum_{i,j} \frac{\partial L}{\partial Z_{i,j}} X_{i+u,j+v} Ku,vL=i,jZi,jLXi+u,j+v
输入梯度* ∂ L ∂ X p , q = ∑ u , v ∂ L ∂ Z p − u , q − v K u , v \frac{\partial L}{\partial X_{p,q}} = \sum_{u,v} \frac{\partial L}{\partial Z_{p-u,q-v}} K_{u,v} Xp,qL=u,vZpu,qvLKu,v

*注:输入梯度计算需要处理边界条件(padding区域补零)


六、工程实现优化
  1. im2col优化:将卷积操作转换为矩阵乘法

    • 将输入局部块展开为列向量
    • 卷积核展开为行向量
    • 计算 Z = K f l a t ⋅ X i m 2 c o l Z = K_{flat} \cdot X_{im2col} Z=KflatXim2col
  2. CUDA加速:利用GPU并行计算每个输出位置的卷积结果

  3. Winograd算法:减少乘法次数,提升小卷积核效率


七、常见问题解答

Q1:为什么梯度计算使用互相关而不是严格卷积?

  • 数学推导中梯度 ∂ L ∂ K \frac{\partial L}{\partial K} KL 的计算本质是输入与输出梯度的互相关
  • 卷积核旋转180度后等价于互相关操作

Q2:如何处理带padding的卷积梯度?

  • 前向传播时若使用padding,反向传播需在输入梯度计算时裁剪对应区域

Q3:多GPU训练时梯度如何同步?

  • 每个GPU计算局部梯度,通过All-Reduce操作汇总梯度

通过深入理解卷积核的数学实现与梯度计算原理,可以更好地进行模型调试、定制化卷积操作设计以及性能优化。

池化层(Pooling Layer)是卷积神经网络中用于特征降维的核心组件,其数学形式与梯度计算方式如下:

一、Pool层的定义与数学形式

池化层通过对特征图进行下采样操作,保留主要特征并减少数据维度。常见类型包括:

  1. 最大池化(Max Pooling)
    数学形式:
    Z i , j = max ⁡ ( u , v ) ∈ R X i ⋅ s + u , j ⋅ s + v Z_{i,j} = \max_{(u,v) \in \mathcal{R}} X_{i \cdot s + u, j \cdot s + v} Zi,j=(u,v)RmaxXis+u,js+v
    其中 R \mathcal{R} R 是池化窗口(如2x2区域), s s s 为步长。

  2. 平均池化(Average Pooling)
    数学形式:
    Z i , j = 1 ∣ R ∣ ∑ ( u , v ) ∈ R X i ⋅ s + u , j ⋅ s + v Z_{i,j} = \frac{1}{|\mathcal{R}|} \sum_{(u,v) \in \mathcal{R}} X_{i \cdot s + u, j \cdot s + v} Zi,j=R1(u,v)RXis+u,js+v
    其中 ∣ R ∣ |\mathcal{R}| R 是窗口内元素数量。

二、梯度计算方式

池化层的反向传播需根据前向传播的记录信息进行梯度分配:

  1. 最大池化梯度
    梯度仅传递到前向传播中最大值所在位置,其他位置梯度为0:
    ∂ L ∂ X p , q = { ∂ L ∂ Z i , j , 若  X p , q  是前向传播中的最大值 0 , 其他情况 \frac{\partial L}{\partial X_{p,q}} = \begin{cases} \frac{\partial L}{\partial Z_{i,j}}, & \text{若 } X_{p,q} \text{ 是前向传播中的最大值} \\ 0, & \text{其他情况} \end{cases} Xp,qL={Zi,jL,0, Xp,q 是前向传播中的最大值其他情况
    需通过上采样(up操作)恢复梯度矩阵。

  2. 平均池化梯度
    梯度均匀分配到前向传播对应的池化窗口内所有位置:
    ∂ L ∂ X p , q = 1 ∣ R ∣ ∑ ( i , j ) ∈ W ∂ L ∂ Z i , j \frac{\partial L}{\partial X_{p,q}} = \frac{1}{|\mathcal{R}|} \sum_{(i,j) \in \mathcal{W}} \frac{\partial L}{\partial Z_{i,j}} Xp,qL=R1(i,j)WZi,jL
    其中 W \mathcal{W} W 是包含该位置的所有输出梯度区域。

三、PyTorch代码示例

# 最大池化层定义
max_pool = nn.MaxPool2d(kernel_size=2, stride=2)
# 反向传播时自动记录最大值位置,梯度仅回传至对应位置

# 平均池化层定义
avg_pool = nn.AvgPool2d(kernel_size=2, stride=2)
# 反向传播时梯度均分到窗口内所有位置

四、核心作用总结

功能最大池化平均池化
特征保留突出显著特征(如边缘)平滑特征(如背景)
梯度传播特性稀疏梯度,加速收敛稠密梯度,稳定性高
典型应用场景图像分类(ResNet、VGG)语义分割(U-Net)

池化层通过减少特征图尺寸提升计算效率,并通过位置不变性增强模型鲁棒性。实际应用中需根据任务特性选择池化类型,例如分类任务常用最大池化,分割任务可能结合平均池化。

在PyTorch中,nn.Conv2d是构建卷积神经网络的核心组件,其参数含义如下:

核心参数解析

  1. in_channels

    • 输入数据的通道数
    • 例如:灰度图为1,RGB图像为3
    • 决定卷积核的深度(每个卷积核需匹配输入通道数)
  2. out_channels

    • 输出特征图的通道数(即卷积核数量)
    • 每个卷积核生成一个独立的特征图
    • 典型设置:逐层递增(如16→32→64)
  3. kernel_size

    • 卷积核的尺寸(整数或元组)
    • 常见值:3×3(平衡感受野与计算量)
    • 公式:输出尺寸 W o u t = ⌊ W i n + 2 p − k s ⌋ + 1 W_{out} = \lfloor \frac{W_{in} + 2p -k}{s} \rfloor +1 Wout=sWin+2pk+1
      k k k为核尺寸, p p p为填充, s s s为步长)
  4. stride

    • 卷积核滑动步长(默认1)
    • 步长越大,输出特征图尺寸越小
    • 典型应用:步长2用于下采样
  5. padding

    • 输入边缘填充像素数(默认0)
    • 保持输入输出尺寸一致时需设置padding=(k-1)/2
    • 支持非对称填充需用nn.ZeroPad2d预处理
  6. dilation

    • 卷积核元素间距(默认1)
    • 增大感受野不增加参数(空洞卷积)
    • 示例:dilation=2时3×3核等效5×5感受野
  7. groups

    • 分组卷积设置(默认1)
    • groups=in_channels时实现深度可分离卷积
    • 减少参数量的重要技巧
  8. bias

    • 是否添加偏置项(默认True)
    • 公式: o u t p u t = c o n v ( i n p u t ) + b output = conv(input) + b output=conv(input)+b
  9. padding_mode

    • 填充模式(默认’zeros’)
    • 可选:‘reflect’(镜像填充)、‘replicate’(边缘复制)等

典型应用示例

import torch.nn as nn

# 输入3通道(RGB), 输出64通道, 3x3卷积核
conv = nn.Conv2d(in_channels=3, 
                out_channels=64,
                kernel_size=3,
                stride=1,
                padding=1,
                bias=True)

参数选择建议

  • 通道数:通常逐层翻倍(16→32→64)以提取复杂特征
  • 核尺寸:优先使用3×3小核堆叠(相比5×5参数量更少)
  • 步长:分类网络常在前几层用步长2快速下采样
  • 高级技巧:结合分组卷积(MobileNet)或空洞卷积(语义分割)优化性能

通过合理配置这些参数,可以构建高效的特征提取网络。实际应用中需根据任务需求调整参数组合,并通过可视化工具(如TensorBoard)观察特征图变化。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2300873.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【OpenCV】入门教学

🏠大家好,我是Yui_💬 🍑如果文章知识点有错误的地方,请指正!和大家一起学习,一起进步👀 🚀如有不懂,可以随时向我提问,我会全力讲解~ &#x1f52…

嵌入式 lwip http server makefsdata

背景: 基于君正X2000 MCU Freertoslwip架构 实现HTTP server服务,MCU作为HTTP服务器通过网口进行数据包的传输,提供网页服务。其中设计到LWIP提供的工具makefsdata,常用于将文件或目录结构转换为适合嵌入到固件中的二进制格式。 …

qemu-kvm源码解析-cpu虚拟化

背景 Qemu 虚拟化中,CPU,内存,中断是虚拟化的核心板块。本章主要对CPU虚拟化源码进行分析 而随着技术的发展包括CPU、内存、网卡等常见外设。硬件层面的虚拟化现在已经是云计算的标配。形成了,qemu作为cpu外层控制面&#xff0c…

数据治理中 大数据处理一般都遵循哪些原则

在数据治理中,大数据处理通常遵循以下原则: 最小化原则:企业应只收集实现特定目的所需的数据,避免数据冗余和安全风险。 合法性原则:企业必须遵守相关法律法规,确保数据处理符合法律要求,降低法…

【Python pro】基本数据类型

一、数字类型 1.1 数字类型的组成 1.1.1 整数 (1)十进制,二进制0b,八进制0o,十六进制0x print(16 0b10000 0o20 0x10) # 输出:True(2)十进制转其他进制 a bin(16) b oct(1…

sql server查询IO消耗大的排查sql诊断语句

原文链接: sql server查询IO消耗大的排查sql诊断语句-S3软件[code]select top 50 (total_logical_reads/execution_count) as avg_logical_reads , (total_logical_writes/execution_count) as avg_logical_writes , (tota ... https://blog.s3.sh.cn/thread-120-1…

kubernetes源码分析 kubelet

简介 从官方的架构图中很容易就能找到 kubelet 执行 kubelet -h 看到 kubelet 的功能介绍: kubelet 是每个 Node 节点上都运行的主要“节点代理”。使用如下的一个向 apiserver 注册 Node 节点:主机的 hostname;覆盖 host 的参数&#xff1…

Golang学习笔记_33——桥接模式

Golang学习笔记_30——建造者模式 Golang学习笔记_31——原型模式 Golang学习笔记_32——适配器模式 文章目录 桥接模式详解一、桥接模式核心概念1. 定义2. 解决的问题3. 核心角色4. 类图 二、桥接模式的特点三、适用场景1. 多维度变化2. 跨平台开发3. 动态切换实现 四、与其他…

【js逆向_入门】图灵爬虫练习平台 第四题

(base64解码)地址:aHR0cHM6Ly9zdHUudHVsaW5ncHl0b24uY24vcHJvYmxlbS1kZXRhaWwvNC8 请求接口带有加密参数: 全局搜索Sign,找到参数生成位置 一目了然,知道参数是怎么构造生成的 调试代码 测试验证思路是否正确 时间: …

Mybatis后端数据库查询多对多查询解决方案

问题场景: 我开发的是一个论文选择系统。 后端用一个论文表paper来存储论文信息。 论文信息中,包含前置课程,也就是你需要修过这些课程才能选择这个论文。 而一个论文对应的课程有很多个。 这样就造成了一个数据库存储的问题。一个paper…

【MySQL排错 】mysql: command not found 数据库安装后无法加载的解决办法

【MySQL排错 】mysql: command not found 数据库安装后无法加载的解决办法 A Solution to Solve Error - mysql: command not found After The Installation of MySQL Community Server By JacksonML 本文简要介绍如何在macOS安装完毕MySQL数据库服务器后,针对无…

分享一款AI绘画图片展示和分享的小程序

🎨奇绘图册 【开源】一款帮AI绘画爱好者维护绘图作品的小程序 查看Demo 反馈 github 文章目录 前言一、奇绘图册是什么?二、项目全景三、预览体验3.1 截图示例3.2 在线体验 四、功能介绍4.1 小程序4.2 服务端 五、安装部署5.1 快速开始~~5.2 手动部…

大模型知识蒸馏技术(4)——离线蒸馏

版权声明 本文原创作者:谷哥的小弟作者博客地址:http://blog.csdn.net/lfdfhl离线蒸馏概述 离线蒸馏是知识蒸馏中最早被提出且最为常见的实现方式,其核心在于教师模型和学生模型的训练是分阶段进行的。具体而言,教师模型首先在训练集上进行充分训练,直至收敛,然后利用教…

解决DeepSeek服务器繁忙的有效方法

全球42%的企业遭遇过AI工具服务器过载导致内容生产中断(数据来源:Gartner 2025)。当竞品在凌晨3点自动发布「智能家居安装指南」时,你的团队可能正因DeepSeek服务器繁忙错失「净水器保养教程」的流量黄金期⏳。147SEO智能调度系统…

BT401双模音频蓝牙模块如何开启ble的透传,有什么注意事项

BT401音频蓝牙模块如何开启ble的透传? 首先BT401的蓝牙音频模块,分为两个版本,dac版本和iis数字音频版本 DAC版本:就是BT401蓝牙模块【9和10脚】直接输出模拟音频信号,也就是说,直接推动耳机可以听到声音 …

基于SSM框架的宠物之家系统(有源码+论文!!!)

这个系统可以帮助大家去做设计或者学习,大家可以管我要word版论文🥰这里具体论文内照片、e-r图等等加载不进来, 大家如果想要源码+论文+制定+调试,可以私信我!!(可改别的系统,例如调查问卷系统等等) 目录 第1章 绪论 1.1开发背景 1.2开发工具及语言 第2章 宠物之家系…

网工项目理论1.7 设备选型

本专栏持续更新,整一个专栏为一个大型复杂网络工程项目。阅读本文章之前务必先看《本专栏必读》。 一.交换机选型要点 制式:盒式交换机/框式交换机。功能:二层交换机/三层交换机。端口密度:每交换机可以提供的端口数量。端口速率:百兆/千兆/万兆。交换容量:交换矩阵…

Gateway中的Filter机制

Gateway中的Filter机制 文章目录 Gateway中的Filter机制Gateway中的Filter机制Gateway Filter 机制的概述核心思想与设计Filter 的两种类型过滤器的生命周期Gateway Filter 的特点Gateway Filter 的意义Gateway Filter 的工作原理核心架构与执行流程执行流程解析过滤器类型的角…

顺序表常用操作和笔试题

1、顺序表的常用操作 1.1 顺序表的创建 如下代码所示&#xff1a;创建了一个默认空间为10的整型顺序表&#xff0c;如果空间不足则会以1.5倍扩容。 List<Integer> list new ArrayList<>(); 创建一个空间为15的整型顺序表 List<Integer> list2 new ArrayL…

二.数据治理流程架构

1、数据治理流程架构核心思想&#xff1a; 该图描绘了一个以数据标准规范体系为核心&#xff0c;大数据生命周期管理为主线&#xff0c;数据资源中心为依托&#xff0c;并辅以数据质量管理和大数据安全与隐私管理的数据治理流程架构。它旨在通过规范化的流程和技术手段&#x…