nlp|微调大语言模型初探索(1),LLaMA-Factory

news2025/3/12 18:04:12

前言

  微调模型通常比从零开始训练一个模型的技术要求低。公司不需要拥有大量的深度学习专家,利用现有的开源工具和库(如Hugging Face的Transformers等),中小型公司可以轻松地使用和微调大型模型,从而快速实现AI能力的集成。因此,学会微调大模型就很有必要。

1.微调方法

1.1 全参数微调

全参数微调是指预训练模型的所有参数进行调整和优化,以使模型能够适应特定任务。具体来说,就是通过训练数据对预训练模型的所有参数(包括权重和偏置等)进行微调,使其更好地执行目标任务。

1.2 部分参数微调

1.2.1 低秩适配(Low-Rank Adaptation, LoRA)

  LoRA方法通过引入低秩矩阵来代替全连接层中的权重更新。它通过对模型中的部分权重矩阵进行低秩分解,从而减少需要微调的参数量。

1.2.2 适配器方法(Adapters)

  适配器方法通过在预训练模型中插入小型的适配器模块,保持大部分原始模型的参数不变,只微调适配器模块。这种方法显著减少了需要微调的参数数量,同时保持了迁移能力。

1.2.3 Prompt Tuning(提示微调)

Prompt Tuning是通过优化输入的“提示”或“前缀”来适应新任务,而不是微调模型的所有参数。这种方法特别适用于自然语言处理任务,在不修改模型本身的情况下,通过改变输入格式来提高模型的任务适应性。
具体部分参数微调方法还有很多,感兴趣的可以自己去探索。

2.实践!!

网上得来终觉浅,绝知此事要躬行,光看理论不实践,这不是耍流氓吗??!!
推荐实践项目:LLaMA-Factory
按照官网教程去安装:

2.1 安装环境

官网推荐的环境:
在这里插入图片描述

git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git
cd LLaMA-Factory
conda create -n llama-lora python=3.10
conda activate llama-lora
pip install -e ".[torch,metrics]"

如果嫌太慢的话,可以换源去安装。
安装完成后,可以去校验校验教程网址

3. 注意事项

3.1.这里我llamafactory-cli train -h校验的时候,报错:

在这里插入图片描述
搜索发现是环境优先级问题:

sudo vim  /etc/profile
# 将你的conda环境放到profile里面
export PATH="/home/hxgk/anaconda3/envs/lora-llama/bin:$PATH"
source /etc/profile

3.2 yaml文件配置

1.将LLaMA-Factory/examples/accelerate/fsdp_config.yaml第19行的num_processes设置成你的显卡个数。
2.将LLaMA-Factory/examples/train_lora/llama3_lora_sft.yaml中的eval全部注释掉,如图所示:
在这里插入图片描述
两个有一个没设置都有可能出现:
sys.exit(load_entry_point(‘torch==2.5.1’, ‘console_scripts’, ‘torchrun’)())

torch.distributed.elastic.multiprocessing.errors.ChildFailedError:
这样的报错。

3.2 具体微调模型的显存大小不能全信官网

官网数据:
在这里插入图片描述
我刚开始使用Llama3-8B,使用lora方法去微调模型(8张8g显存显卡),理论上只会使用16g-32g显存,我64g显存绰绰有余,结果直接报OOM,结果气的我直接下载了llama-1B才成功微调。

总结

整体来说,LLaMA-Factory这个项目的坑不少,需要仔细一点,我现在也刚刚跑通,后续考虑制作自己的数据集,然后微调一个chatbox试试。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2300585.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

c++TinML转html

cTinML转html 前言解析解释转译html类定义开头html 结果这是最终效果(部分): ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/6cf6c3e3c821446a84ae542bcc2652d4.png) 前言 在python.tkinter设计标记语言(转译2-html)中提到了将Ti…

《蓝耘服务器:领先架构、技术创新与行业应用全景解析》

🌟 嗨,我是Lethehong!🌟 🌍 立志在坚不欲说,成功在久不在速🌍 🚀 欢迎关注:👍点赞⬆️留言收藏🚀 🍀欢迎使用:小智初学…

uniapp webview嵌入外部h5网页后的消息通知

最近开发了个oa系统,pc端的表单使用form-create开发,form-create 是一个可以通过 JSON 生成具有动态渲染、数据收集、验证和提交功能的表单生成组件。移动端使用uniapp开发,但是因为form-create移动端只支持vant,不支持uniapp。官…

java听书项目

项目的架构 网关:1路由转发 2.认证鉴权(token)3.统一处理(跨域) Mysql:关系型数据库 ES:搜索数据库 Redis:页面级缓存,会话状态存储 GitLab:私有托管平台 K8S:自动化部署、扩展和管理容器化应用程序的开源系统 Jenkins:自动化部署 1.环境搭建 创建一个父工程…

C#功能测试

List 内部元素为引用 src[0]为"11" List<Source> src new List<Source>(); src.Add(new Source() { Name "1", Age 1, Description "1" }); src.Add(new Source() { Name "2", Age 2, Description "2"…

2025百度快排技术分析:模拟点击与发包算法的背后原理

一晃做SEO已经15年了&#xff0c;2025年还有人问我如何做百度快速排名&#xff0c;我能给出的答案就是&#xff1a;做好内容的前提下&#xff0c;多刷刷吧&#xff01;百度的SEO排名算法一直是众多SEO从业者研究的重点&#xff0c;模拟算法、点击算法和发包算法是百度快速排名的…

DeepSeek+即梦 做AI视频

DeepSeek做AI视频 制作流程第一步&#xff1a;DeepSeek 生成视频脚本和分镜 第二步&#xff1a;生成分镜图片绘画提示词第三步&#xff1a;生成分镜图片第四步&#xff1a;使用可灵 AI 工具&#xff0c;将生成的图片转成视频。第五步&#xff1a;剪映成短视频 DeepSeek 真的强&…

【R语言】聚类分析

聚类分析是一种常用的无监督学习方法&#xff0c;是将所观测的事物或者指标进行分类的一种统计分析方法&#xff0c;其目的是通过辨认在某些特征上相似的事物&#xff0c;并将它们分成各种类别。R语言提供了多种聚类分析的方法和包。 方法优点缺点适用场景K-means计算效率高需…

LVS相关原理

一、LVS集群的体系结构 1.1 LVS简介 LVS 是 Linux Virtual Server 的简称&#xff0c;也就是 Linux 虚拟服务器 , 是一个由章文嵩博士发起的自由软件项目&#xff0c;它的官方站点是 www.linuxvirtualserver.org 。现在 LVS 已经是 Linux标准内核的一部分&#xff0c;在Linux2…

linux--关于makefile

makefile文件 可以指定编译顺序&#xff0c;这样方便一个项目的多个文件要编译的挨个操作的麻烦。 makefile文件的命名&#xff1a;makefile 或者 Makefile 必须是这俩&#xff0c;系统才能识别 规则的书写语法如下&#xff1a; 一个makefile内可以有多个规则 目标:依赖a 依…

Java发展史

JavaEE的由来 语言的诞生 Java的前身是Oak语言&#xff0c;其目的是搞嵌入式开发开发智能面包机 叮~~~&#x1f35e;&#x1f35e;&#x1f35e; 产品以失败告终 巅峰 网景公司需要网景浏览器打开网页&#xff0c;Oak->Java&#xff0c;进行前端开发&#xff08;相关技…

Jenkins 新建配置 Freestyle project 任务 六

Jenkins 新建配置 Freestyle project 任务 六 一、新建任务 在 Jenkins 界面 点击 New Item 点击 Apply 点击 Save 回到任务主界面 二、General 点击左侧 Configure Description&#xff1a;任务描述 勾选 Discard old builds Discard old builds&#xff1a;控制何时…

Electron视图进程和主进程通讯

快速创建基于vue的electron项目&#xff1a;quick-start/create-electron - npm 视图线程也就index.html是无法直接访问这个api的&#xff08;如果没有开启视图层访问nodejs的功能&#xff0c;现在几乎没法直接开启&#xff0c;开启了一堆警告提示&#xff09; 所以需要通过r…

【湖南-益阳】《益阳市市本级政府投资信息化项目预算编制与财政评审工作指南》益财评〔2024〕346号-省市费用标准解读系列40

《益阳市市本级政府投资信息化项目预算编制与财政评审工作指南&#xff08;试行&#xff09;》&#xff08;益财评〔2024〕346号&#xff09;由益阳市财政局主编&#xff0c;2024年10月17日起正式执行&#xff0c;本指南主要规定了政府投资信息化项目费用的构成、测量过程和方法…

具身智能在智能巡检机器人中的应用——以开关柜带电操作机器人为例

随着机器人技术和人工智能的迅速发展&#xff0c;具身智能在各行业的应用日益广泛&#xff0c;尤其是在电力行业中的智能巡检领域。传统的电力巡检和维护工作通常需要人工操作&#xff0c;存在着高温、高压、强电磁场等危险环境&#xff0c;且效率较低。开关柜带电操作机器人作…

nuxt中引入element-ui组件控制台报错问题

在使用element-ui组件的外层加一层 <client-only placeholder"Loading..."><van-button type"primary">主要按钮</van-button> </client-only> 实际使用&#xff1a; <div class"tab"><client-only placehol…

Java面试第二山!《计算机网络》!

在 Java 面试里&#xff0c;计算机网络知识是高频考点&#xff0c;今天就来盘点那些最容易被问到的计算机网络面试题&#xff0c;帮你轻松应对面试&#xff0c;也方便和朋友们一起探讨学习。 一、HTTP 和 HTTPS 的区别 1. 面试题呈现 HTTP 和 HTTPS 有什么区别&#xff1f;在…

RocketMQ 5.0安装部署

0.前言 在微服务架构逐渐成为主流的今天&#xff0c;消息队列如同数字世界的快递员&#xff0c;承担着系统间高效通信的重要使命。 Apache RocketMQ 自诞生以来&#xff0c;因其架构简单、业务功能丰富、具备极强可扩展性等特点被众多企业开发者以及云厂商广泛采用。历经十余…

俄罗斯方块游戏完整代码示例

以下是一个基于Cocos Creator引擎开发的俄罗斯方块游戏的完整代码示例。该游戏实现了俄罗斯方块的基本功能&#xff0c;并且代码整合在单个文件中&#xff0c;无需任何外部依赖&#xff0c;可以直接在浏览器中运行。 1. 创建Cocos Creator项目 首先&#xff0c;确保你已经安装了…

Ubuntu22.04配置cuda/cudnn/pytorch

Ubuntu22.04配置cuda/cudnn/pytorch 安装cuda官网下载.run文件并且安装/etc/profile中配置cuda环境变量 cudnn安装官网找cuda版本对应的cudnn版本下载复制相应文件到系统文件中 安装pytorch官网找cuda对应版本的pytorchpython代码测试pytorch-GPU版本安装情况 安装cuda 官网下…