SpringBoot教程(三十二) SpringBoot集成Skywalking链路跟踪

news2025/3/13 22:32:14
SpringBoot教程(三十二) | SpringBoot集成Skywalking链路跟踪
  • 一、Skywalking是什么?
  • 二、Skywalking与JDK版本的对应关系
  • 三、Skywalking下载
  • 四、Skywalking 数据存储
  • 五、Skywalking 的启动
  • 六、部署探针
    • 前提: Agents 8.9.0 放入 项目工程
    • 方式一:IDEA 部署探针
    • 方式二:Java 命令行启动方式
    • 方式三:编写sh脚本启动(linux环境)
  • 七、Springboot 的启动
    • IDEA 部署探针方式启动
    • Skywalking 进行日志配置
    • 实现入参、返参都可查看
      • 方式一:通过 Agent 配置实现 (有缺点)
      • 方式二:通过 trace 和 Filter 实现
      • 方式三:通过 trace 和 Aop 去实现

一、Skywalking是什么?

SkyWalking是一个开源的、用于观测分布式系统(特别是微服务、云原生和容器化应用)的平台。
它提供了对分布式系统的追踪、监控和诊断能力。

二、Skywalking与JDK版本的对应关系

SkyWalking 8.x版本要求Java版本至少为8(即JDK 1.8),
SkyWalking 9.x版本则要求Java版本至少为11(即JDK 11)

所以选择的时候需要注意一下JDK版本。

三、Skywalking下载

Skywalking 官网下载地址 https://skywalking.apache.org/downloads/
在这里插入图片描述

  • 其他的版本的 APM 地址
    https://archive.apache.org/dist/skywalking/

  • 其他的java 版本的 Agents 地址
    https://archive.apache.org/dist/skywalking/java-agent/

注意点:
7.x及以下版本 APM 包里面有包括 Agents,但是8.x的就发现被分开了,所以8.x的及以上的 就需要 Agents 也得下载

目前该文选择 下载 APM 8.9.1 和 Agents 8.9.0 后解压
在这里插入图片描述

四、Skywalking 数据存储

Skywalking 存在多种数据存储

  1. h2(默认的存储方式,重启后数据会丢失)
  2. Elasticsearch (最常用的数据存储方式)
  3. MySQL
  4. TiDB

相关文件OAP 配置文件(config/application.yml)
我只截取了关于设置存储方式的部分

storage:
  selector: ${SW_STORAGE:h2}
  elasticsearch:
    namespace: ${SW_NAMESPACE:""}
    clusterNodes: ${SW_STORAGE_ES_CLUSTER_NODES:localhost:9200}
    protocol: ${SW_STORAGE_ES_HTTP_PROTOCOL:"http"}
    connectTimeout: ${SW_STORAGE_ES_CONNECT_TIMEOUT:500}
    socketTimeout: ${SW_STORAGE_ES_SOCKET_TIMEOUT:30000}
    numHttpClientThread: ${SW_STORAGE_ES_NUM_HTTP_CLIENT_THREAD:0}
    user: ${SW_ES_USER:""}
    password: ${SW_ES_PASSWORD:""}
    trustStorePath: ${SW_STORAGE_ES_SSL_JKS_PATH:""}
    trustStorePass: ${SW_STORAGE_ES_SSL_JKS_PASS:""}
    secretsManagementFile: ${SW_ES_SECRETS_MANAGEMENT_FILE:""} # Secrets management file in the properties format includes the username, password, which are managed by 3rd party tool.
    dayStep: ${SW_STORAGE_DAY_STEP:1} # Represent the number of days in the one minute/hour/day index.
    indexShardsNumber: ${SW_STORAGE_ES_INDEX_SHARDS_NUMBER:1} # Shard number of new indexes
    indexReplicasNumber: ${SW_STORAGE_ES_INDEX_REPLICAS_NUMBER:1} # Replicas number of new indexes
    # Super data set has been defined in the codes, such as trace segments.The following 3 config would be improve es performance when storage super size data in es.
    superDatasetDayStep: ${SW_SUPERDATASET_STORAGE_DAY_STEP:-1} # Represent the number of days in the super size dataset record index, the default value is the same as dayStep when the value is less than 0
    superDatasetIndexShardsFactor: ${SW_STORAGE_ES_SUPER_DATASET_INDEX_SHARDS_FACTOR:5} #  This factor provides more shards for the super data set, shards number = indexShardsNumber * superDatasetIndexShardsFactor. Also, this factor effects Zipkin and Jaeger traces.
    superDatasetIndexReplicasNumber: ${SW_STORAGE_ES_SUPER_DATASET_INDEX_REPLICAS_NUMBER:0} # Represent the replicas number in the super size dataset record index, the default value is 0.
    indexTemplateOrder: ${SW_STORAGE_ES_INDEX_TEMPLATE_ORDER:0} # the order of index template
    bulkActions: ${SW_STORAGE_ES_BULK_ACTIONS:5000} # Execute the async bulk record data every ${SW_STORAGE_ES_BULK_ACTIONS} requests
    # flush the bulk every 10 seconds whatever the number of requests
    # INT(flushInterval * 2/3) would be used for index refresh period.
    flushInterval: ${SW_STORAGE_ES_FLUSH_INTERVAL:15}
    concurrentRequests: ${SW_STORAGE_ES_CONCURRENT_REQUESTS:2} # the number of concurrent requests
    resultWindowMaxSize: ${SW_STORAGE_ES_QUERY_MAX_WINDOW_SIZE:10000}
    metadataQueryMaxSize: ${SW_STORAGE_ES_QUERY_MAX_SIZE:5000}
    segmentQueryMaxSize: ${SW_STORAGE_ES_QUERY_SEGMENT_SIZE:200}
    profileTaskQueryMaxSize: ${SW_STORAGE_ES_QUERY_PROFILE_TASK_SIZE:200}
    oapAnalyzer: ${SW_STORAGE_ES_OAP_ANALYZER:"{"analyzer":{"oap_analyzer":{"type":"stop"}}}"} # the oap analyzer.
    oapLogAnalyzer: ${SW_STORAGE_ES_OAP_LOG_ANALYZER:"{"analyzer":{"oap_log_analyzer":{"type":"standard"}}}"} # the oap log analyzer. It could be customized by the ES analyzer configuration to support more language log formats, such as Chinese log, Japanese log and etc.
    advanced: ${SW_STORAGE_ES_ADVANCED:""}
  h2:
    driver: ${SW_STORAGE_H2_DRIVER:org.h2.jdbcx.JdbcDataSource}
    url: ${SW_STORAGE_H2_URL:jdbc:h2:mem:skywalking-oap-db;DB_CLOSE_DELAY=-1}
    user: ${SW_STORAGE_H2_USER:sa}
    metadataQueryMaxSize: ${SW_STORAGE_H2_QUERY_MAX_SIZE:5000}
    maxSizeOfArrayColumn: ${SW_STORAGE_MAX_SIZE_OF_ARRAY_COLUMN:20}
    numOfSearchableValuesPerTag: ${SW_STORAGE_NUM_OF_SEARCHABLE_VALUES_PER_TAG:2}
    maxSizeOfBatchSql: ${SW_STORAGE_MAX_SIZE_OF_BATCH_SQL:100}
    asyncBatchPersistentPoolSize: ${SW_STORAGE_ASYNC_BATCH_PERSISTENT_POOL_SIZE:1}
  mysql:
    properties:
      jdbcUrl: ${SW_JDBC_URL:"jdbc:mysql://localhost:3306/swtest?rewriteBatchedStatements=true"}
      dataSource.user: ${SW_DATA_SOURCE_USER:root}
      dataSource.password: ${SW_DATA_SOURCE_PASSWORD:root@1234}
      dataSource.cachePrepStmts: ${SW_DATA_SOURCE_CACHE_PREP_STMTS:true}
      dataSource.prepStmtCacheSize: ${SW_DATA_SOURCE_PREP_STMT_CACHE_SQL_SIZE:250}
      dataSource.prepStmtCacheSqlLimit: ${SW_DATA_SOURCE_PREP_STMT_CACHE_SQL_LIMIT:2048}
      dataSource.useServerPrepStmts: ${SW_DATA_SOURCE_USE_SERVER_PREP_STMTS:true}
    metadataQueryMaxSize: ${SW_STORAGE_MYSQL_QUERY_MAX_SIZE:5000}
    maxSizeOfArrayColumn: ${SW_STORAGE_MAX_SIZE_OF_ARRAY_COLUMN:20}
    numOfSearchableValuesPerTag: ${SW_STORAGE_NUM_OF_SEARCHABLE_VALUES_PER_TAG:2}
    maxSizeOfBatchSql: ${SW_STORAGE_MAX_SIZE_OF_BATCH_SQL:2000}
    asyncBatchPersistentPoolSize: ${SW_STORAGE_ASYNC_BATCH_PERSISTENT_POOL_SIZE:4}
  tidb:
    properties:
      jdbcUrl: ${SW_JDBC_URL:"jdbc:mysql://localhost:4000/tidbswtest?rewriteBatchedStatements=true"}
      dataSource.user: ${SW_DATA_SOURCE_USER:root}
      dataSource.password: ${SW_DATA_SOURCE_PASSWORD:""}
      dataSource.cachePrepStmts: ${SW_DATA_SOURCE_CACHE_PREP_STMTS:true}
      dataSource.prepStmtCacheSize: ${SW_DATA_SOURCE_PREP_STMT_CACHE_SQL_SIZE:250}
      dataSource.prepStmtCacheSqlLimit: ${SW_DATA_SOURCE_PREP_STMT_CACHE_SQL_LIMIT:2048}
      dataSource.useServerPrepStmts: ${SW_DATA_SOURCE_USE_SERVER_PREP_STMTS:true}
      dataSource.useAffectedRows: ${SW_DATA_SOURCE_USE_AFFECTED_ROWS:true}
    metadataQueryMaxSize: ${SW_STORAGE_MYSQL_QUERY_MAX_SIZE:5000}
    maxSizeOfArrayColumn: ${SW_STORAGE_MAX_SIZE_OF_ARRAY_COLUMN:20}
    numOfSearchableValuesPerTag: ${SW_STORAGE_NUM_OF_SEARCHABLE_VALUES_PER_TAG:2}
    maxSizeOfBatchSql: ${SW_STORAGE_MAX_SIZE_OF_BATCH_SQL:2000}
    asyncBatchPersistentPoolSize: ${SW_STORAGE_ASYNC_BATCH_PERSISTENT_POOL_SIZE:4}
  influxdb:
    # InfluxDB configuration
    url: ${SW_STORAGE_INFLUXDB_URL:http://localhost:8086}
    user: ${SW_STORAGE_INFLUXDB_USER:root}
    password: ${SW_STORAGE_INFLUXDB_PASSWORD:}
    database: ${SW_STORAGE_INFLUXDB_DATABASE:skywalking}
    actions: ${SW_STORAGE_INFLUXDB_ACTIONS:1000} # the number of actions to collect
    duration: ${SW_STORAGE_INFLUXDB_DURATION:1000} # the time to wait at most (milliseconds)
    batchEnabled: ${SW_STORAGE_INFLUXDB_BATCH_ENABLED:true}
    fetchTaskLogMaxSize: ${SW_STORAGE_INFLUXDB_FETCH_TASK_LOG_MAX_SIZE:5000} # the max number of fetch task log in a request
    connectionResponseFormat: ${SW_STORAGE_INFLUXDB_CONNECTION_RESPONSE_FORMAT:MSGPACK} # the response format of connection to influxDB, cannot be anything but MSGPACK or JSON.
  postgresql:
    properties:
      jdbcUrl: ${SW_JDBC_URL:"jdbc:postgresql://localhost:5432/skywalking"}
      dataSource.user: ${SW_DATA_SOURCE_USER:postgres}
      dataSource.password: ${SW_DATA_SOURCE_PASSWORD:123456}
      dataSource.cachePrepStmts: ${SW_DATA_SOURCE_CACHE_PREP_STMTS:true}
      dataSource.prepStmtCacheSize: ${SW_DATA_SOURCE_PREP_STMT_CACHE_SQL_SIZE:250}
      dataSource.prepStmtCacheSqlLimit: ${SW_DATA_SOURCE_PREP_STMT_CACHE_SQL_LIMIT:2048}
      dataSource.useServerPrepStmts: ${SW_DATA_SOURCE_USE_SERVER_PREP_STMTS:true}
    metadataQueryMaxSize: ${SW_STORAGE_MYSQL_QUERY_MAX_SIZE:5000}
    maxSizeOfArrayColumn: ${SW_STORAGE_MAX_SIZE_OF_ARRAY_COLUMN:20}
    numOfSearchableValuesPerTag: ${SW_STORAGE_NUM_OF_SEARCHABLE_VALUES_PER_TAG:2}
    maxSizeOfBatchSql: ${SW_STORAGE_MAX_SIZE_OF_BATCH_SQL:2000}
    asyncBatchPersistentPoolSize: ${SW_STORAGE_ASYNC_BATCH_PERSISTENT_POOL_SIZE:4}
  zipkin-elasticsearch:
    namespace: ${SW_NAMESPACE:""}
    clusterNodes: ${SW_STORAGE_ES_CLUSTER_NODES:localhost:9200}
    protocol: ${SW_STORAGE_ES_HTTP_PROTOCOL:"http"}
    trustStorePath: ${SW_STORAGE_ES_SSL_JKS_PATH:""}
    trustStorePass: ${SW_STORAGE_ES_SSL_JKS_PASS:""}
    dayStep: ${SW_STORAGE_DAY_STEP:1} # Represent the number of days in the one minute/hour/day index.
    indexShardsNumber: ${SW_STORAGE_ES_INDEX_SHARDS_NUMBER:1} # Shard number of new indexes
    indexReplicasNumber: ${SW_STORAGE_ES_INDEX_REPLICAS_NUMBER:1} # Replicas number of new indexes
    # Super data set has been defined in the codes, such as trace segments.The following 3 config would be improve es performance when storage super size data in es.
    superDatasetDayStep: ${SW_SUPERDATASET_STORAGE_DAY_STEP:-1} # Represent the number of days in the super size dataset record index, the default value is the same as dayStep when the value is less than 0
    superDatasetIndexShardsFactor: ${SW_STORAGE_ES_SUPER_DATASET_INDEX_SHARDS_FACTOR:5} #  This factor provides more shards for the super data set, shards number = indexShardsNumber * superDatasetIndexShardsFactor. Also, this factor effects Zipkin and Jaeger traces.
    superDatasetIndexReplicasNumber: ${SW_STORAGE_ES_SUPER_DATASET_INDEX_REPLICAS_NUMBER:0} # Represent the replicas number in the super size dataset record index, the default value is 0.
    user: ${SW_ES_USER:""}
    password: ${SW_ES_PASSWORD:""}
    secretsManagementFile: ${SW_ES_SECRETS_MANAGEMENT_FILE:""} # Secrets management file in the properties format includes the username, password, which are managed by 3rd party tool.
    bulkActions: ${SW_STORAGE_ES_BULK_ACTIONS:5000} # Execute the async bulk record data every ${SW_STORAGE_ES_BULK_ACTIONS} requests
    # flush the bulk every 10 seconds whatever the number of requests
    # INT(flushInterval * 2/3) would be used for index refresh period.
    flushInterval: ${SW_STORAGE_ES_FLUSH_INTERVAL:15}
    concurrentRequests: ${SW_STORAGE_ES_CONCURRENT_REQUESTS:2} # the number of concurrent requests
    resultWindowMaxSize: ${SW_STORAGE_ES_QUERY_MAX_WINDOW_SIZE:10000}
    metadataQueryMaxSize: ${SW_STORAGE_ES_QUERY_MAX_SIZE:5000}
    segmentQueryMaxSize: ${SW_STORAGE_ES_QUERY_SEGMENT_SIZE:200}
    profileTaskQueryMaxSize: ${SW_STORAGE_ES_QUERY_PROFILE_TASK_SIZE:200}
    oapAnalyzer: ${SW_STORAGE_ES_OAP_ANALYZER:"{"analyzer":{"oap_analyzer":{"type":"stop"}}}"} # the oap analyzer.
    oapLogAnalyzer: ${SW_STORAGE_ES_OAP_LOG_ANALYZER:"{"analyzer":{"oap_log_analyzer":{"type":"standard"}}}"} # the oap log analyzer. It could be customized by the ES analyzer configuration to support more language log formats, such as Chinese log, Japanese log and etc.
    advanced: ${SW_STORAGE_ES_ADVANCED:""}
  iotdb:
    host: ${SW_STORAGE_IOTDB_HOST:127.0.0.1}
    rpcPort: ${SW_STORAGE_IOTDB_RPC_PORT:6667}
    username: ${SW_STORAGE_IOTDB_USERNAME:root}
    password: ${SW_STORAGE_IOTDB_PASSWORD:root}
    storageGroup: ${SW_STORAGE_IOTDB_STORAGE_GROUP:root.skywalking}
    sessionPoolSize: ${SW_STORAGE_IOTDB_SESSIONPOOL_SIZE:16}
    fetchTaskLogMaxSize: ${SW_STORAGE_IOTDB_FETCH_TASK_LOG_MAX_SIZE:1000} # the max number of fetch task log in a request

五、Skywalking 的启动

进入 D:apache-skywalking-apm-8.9.1apache-skywalking-apm-binin ,双击运行 startup.bat(用管理员方式启动),会开启两个命令行窗口。

  • (1)Skywalking-Collector:追踪信息收集器,通过 gRPC/Http 收集客户端的采集信息 。Http默认端口 12800,gRPC默认端口 11800。(如需要修改,可前往 apache-skywalking-apm-binconfigapplicaiton.yml 进行修改)
  • (2)Skywalking-Webapp:管理平台页面 默认端口 8080 (如需要修改,可前往 apache-skywalking-apm-binwebappwebapp.yml 进行修改)

启动图如下:
在这里插入图片描述

接着浏览器Skywalking访问:http://localhost:8080/
这个右边有个自动刷新的按钮,一定要启动起来
不然到时候,springboot工程启动以后,你以为没有连接成功(F5刷新页面是没有用的)
在这里插入图片描述

六、部署探针

前提: Agents 8.9.0 放入 项目工程

也不说放其他位置不好,不过放到项目里面更好一点,后面你就能感受到便利了

在这里插入图片描述

方式一:IDEA 部署探针

修改启动类的 VM options(虚拟机选项)配置
在这里插入图片描述

在这里插入图片描述
配置的jvm参数如下:

-javaagent:D:ideaObjectreactBootspringboot-fullsrcmainskywalking-agentskywalking-agent.jar
-Dskywalking.agent.service_name=woqu-ndy
-Dskywalking.collector.backend_service=127.0.0.1:11800
  • javaagent: 表示 skywalking‐agent.jar的本地磁盘的路径
    (我这边是放到项目里面了)
    -Dskywalking.agent.service_name:表示在skywalking上显示的服务名
    -Dskywalking.collector.backend_service:表示skywalking的collector服务的IP及端口
  • 注意:-Dskywalking.collector.backend_service 可以指定远程地址, 但是 javaagent 必须绑定你本机物理路径的 skywalking-agent.jar
方式二:Java 命令行启动方式
java -javaagent:D:ideaObjectreactBootspringboot-fullsrcmainskywalking-agentskywalking-agent.jar=-Dskywalking.agent.service_name=service-myapp,-Dskywalking.collector.backend_service=localhost:11800 -jar service-myapp.jar
方式三:编写sh脚本启动(linux环境)
#!/bin/bash  

# 设置 SkyWalking Agent 的路径  
AGENT_PATH="/home/yourusername/Desktop/apache-skywalking-apm-6.6.0/apache-skywalking-apm-bin/agent"  

# 设置 Java 应用的 JAR 文件路径  
JAR_PATH="/path/to/your/service-myapp.jar"  

# 设置 SkyWalking 服务名称和 Collector 后端服务地址  
SERVICE_NAME="service-myapp"  
COLLECTOR_BACKEND_SERVICE="localhost:11800"  

# 构造 Java Agent 参数  
JAVA_AGENT="-javaagent:$AGENT_PATH/skywalking-agent.jar   
            -Dskywalking.agent.service_name=$SERVICE_NAME   
            -Dskywalking.collector.backend_service=$COLLECTOR_BACKEND_SERVICE"  
  
# 启动 Java 应用  
java $JAVA_AGENT -jar $JAR_PATH

七、Springboot 的启动

IDEA 部署探针方式启动

启动后,控制台日志输出开头出现了以下的记录,就表示连接上Skywalking了
在这里插入图片描述
再看 Skywalking(http://localhost:8080/) 页面那边,你就会发现有个这个图(表示连接上了)
在这里插入图片描述
我们再请求一下 Controller 的接口,就会发现捕获了相关接口记录
(但是目前,还是没有接口具体详细的日志入参或者出参的)
在这里插入图片描述
在这里插入图片描述

Skywalking 进行日志配置

为log日志增加 skywalking的 traceId(追踪ID)。便于排查

首先引入maven依赖

 <!-- SkyWalking 的日志工具包 -->
<dependency>
   <groupId>org.apache.skywalking</groupId>
   <artifactId>apm-toolkit-logback-1.x</artifactId>
   <version>9.0.0</version>
</dependency>

接着在 resources文件夹下创建 logback-spring.xml文件

<?xml version="1.0" encoding="UTF-8"?>
<configuration debug="false">

    <!--定义日志文件的存储地址 勿在 LogBack 的配置中使用相对路径-->
    <property name="LOG_HOME" value="D:/logs/" ></property>

    <!-- 彩色日志 -->
    <conversionRule conversionWord="clr" converterClass="org.springframework.boot.logging.logback.ColorConverter" />

    <!--控制台日志, 控制台输出 -->
    <appender name="STDOUT" class="ch.qos.logback.core.ConsoleAppender">
        <encoder class="ch.qos.logback.core.encoder.LayoutWrappingEncoder">
            <layout class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.mdc.TraceIdMDCPatternLogbackLayout">
                <!--格式化输出:%d表示日期,%thread表示线程名,%-5level:级别从左显示5个字符宽度%msg:日志消息,%n是换行符-->
                <pattern>%clr(%d{yyyy-MM-dd HH:mm:ss.SSS}){faint} [%X{tid}] %clr([%-10.10thread]){faint} %clr(%-5level) %clr(%-50.50logger{50}:%-3L){cyan} %clr(-){faint} %msg%n</pattern>
            </layout>
        </encoder>
    </appender>

    <!--文件日志, 按照每天生成日志文件 (只能是 由 Logger 或者 LoggerFactory 记录的日志消息哦)-->
    <!--以下关于 日志文件的pattern 需要去掉颜色,防止出现 ANSI转义序列-->
    <appender name="FILE" class="ch.qos.logback.core.rolling.RollingFileAppender">
        <rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">
            <!--日志文件输出的文件名-->
            <FileNamePattern>${LOG_HOME}/%d{yyyy-MM-dd}/pro.log</FileNamePattern>
            <!--日志文件保留天数-->
            <MaxHistory>30</MaxHistory>
        </rollingPolicy>
        <encoder class="ch.qos.logback.core.encoder.LayoutWrappingEncoder">
            <layout class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.mdc.TraceIdMDCPatternLogbackLayout">
                <!--格式化输出:%d表示日期,%thread表示线程名,%-5level:级别从左显示5个字符宽度%msg:日志消息,%n是换行符-->
                <!--            <pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} [%thread] %-5level %logger{50} - %msg%n</pattern>-->
                <pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} [%X{tid}] [%-10.10thread] %-5level %-50.50logger{50}:%-3L - %msg%n</pattern>
            </layout>
        </encoder>
        <!--日志文件最大的大小-->
        <triggeringPolicy class="ch.qos.logback.core.rolling.SizeBasedTriggeringPolicy">
            <MaxFileSize>10MB</MaxFileSize>
        </triggeringPolicy>
    </appender>

    <!--skywalking grpc 日志收集-->
    <appender name="grpc" class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.log.GRPCLogClientAppender">
        <encoder class="ch.qos.logback.core.encoder.LayoutWrappingEncoder">
            <layout class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.mdc.TraceIdMDCPatternLogbackLayout">
                <Pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} [%X{tid}] [%thread] %-5level %logger{36} -%msg%n</Pattern>
            </layout>
        </encoder>
    </appender>


    <!-- 日志输出级别 -->
    <root level="INFO">
        <appender-ref ref="STDOUT" ></appender-ref>
        <appender-ref ref="FILE" ></appender-ref>
        <appender-ref ref="grpc"/>
    </root>
</configuration>

请求接口就可以发现TID的输出
(在这里是882c67dc859046c398fbfc5725df9de0.109.17288962842340001)
在这里插入图片描述

然后把它放到 追踪 栏目的追踪id ,可以查到记录

在这里插入图片描述
然后把它放到 日志 栏目的追踪id ,可以查到记录
在这里插入图片描述

实现入参、返参都可查看
方式一:通过 Agent 配置实现 (有缺点)

首先,你需要确认SkyWalking的Agent配置。
SkyWalking的Agent在启动时会读取配置文件,通常是agent.config。
默认情况下,请求参数的采集是关闭的,你需要手动开启。
具体步骤如下:
在你的SkyWalking Agent配置文件agent.config中,找到plugin部分,确保以下配置项设置为true:

plugin.tomcat.collect_http_params=${SW_PLUGIN_TOMCAT_COLLECT_HTTP_PARAMS:true}
plugin.springmvc.collect_http_params=${SW_PLUGIN_SPRINGMVC_COLLECT_HTTP_PARAMS:true}
plugin.httpclient.collect_http_params=${SW_PLUGIN_HTTPCLIENT_COLLECT_HTTP_PARAMS:true}

缺点:可是以上设置,只能开启get请求的入参采集,post无法获取到,这个方式不怎么好

方式二:通过 trace 和 Filter 实现

一、引入追踪工具包

<!-- SkyWalking 追踪工具包 -->
<dependency>
   <groupId>org.apache.skywalking</groupId>
   <artifactId>apm-toolkit-trace</artifactId>
   <version>9.0.0</version>
</dependency>

二、使用 HttpFilter 和 ContentCachingRequestWrapper

知识小贴士:为什么不用HttpServletRequest?
如果直接把HttpServletRequest中的InputStream读取后输出日志,会导致后续业务逻辑读取不到InputStream中的内容,因为流只能读取一次。

package com.example.springbootfull.quartztest.Filter;

import lombok.extern.slf4j.Slf4j;
import org.apache.skywalking.apm.toolkit.trace.ActiveSpan;
import org.springframework.stereotype.Component;
import org.springframework.util.StringUtils;
import org.springframework.web.util.ContentCachingRequestWrapper;
import org.springframework.web.util.ContentCachingResponseWrapper;

import javax.servlet.FilterChain;
import javax.servlet.ServletException;
import javax.servlet.http.HttpFilter;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import java.io.IOException;
import java.nio.charset.StandardCharsets;
import java.util.Enumeration;
import java.util.HashSet;
import java.util.Set;
import java.util.stream.Collectors;

@Slf4j
@Component
public class ApmHttpInfo extends HttpFilter {
    //被忽略的头部信息  
    private static final Set<String> IGNORED_HEADERS;
    static {
        Set<String> ignoredHeaders = new HashSet<>();
        ignoredHeaders.addAll(
                java.util.Arrays.asList(
                        "Content-Type",
                        "User-Agent",
                        "Accept",
                        "Cache-Control",
                        "Postman-Token",
                        "Host",
                        "Accept-Encoding",
                        "Connection",
                        "Content-Length"
                ).stream()
                        .map(String::toUpperCase)
                        .collect(Collectors.toList())
        );
        IGNORED_HEADERS = ignoredHeaders;
    }

    @Override
    public void doFilter(HttpServletRequest request, HttpServletResponse response, FilterChain filterChain) throws IOException, ServletException {
        ContentCachingRequestWrapper requestWrapper = new ContentCachingRequestWrapper(request);
        ContentCachingResponseWrapper responseWrapper = new ContentCachingResponseWrapper(response);

        try {
            filterChain.doFilter(requestWrapper, responseWrapper);
        } finally {
            try {
                //构造请求信息: 比如 curl -X GET http://localhost:18080/getPerson?id=1 -H 'token: me-token' -d '{ "name": "hello" }'
                //构造请求的方法&URL&参数
                StringBuilder sb = new StringBuilder("curl")
                        .append(" -X ").append(request.getMethod())
                        .append(" ").append(request.getRequestURL().toString());
                if (StringUtils.hasLength(request.getQueryString())) {
                    sb.append("?").append(request.getQueryString());
                }

                //构造header
                Enumeration<String> headerNames = request.getHeaderNames();
                while (headerNames.hasMoreElements()) {
                    String headerName = headerNames.nextElement();
                    if (!IGNORED_HEADERS.contains(headerName.toUpperCase())) {
                        sb.append(" -H '").append(headerName).append(": ").append(request.getHeader(headerName)).append("'");
                    }
                }

                //获取body
                String body = new String(requestWrapper.getContentAsByteArray(), StandardCharsets.UTF_8);
                if (StringUtils.hasLength(body)) {
                    sb.append(" -d '").append(body).append("'");
                }
                //输出到input
                ActiveSpan.tag("input", sb.toString());

                //获取返回值body
                String responseBody = new String(responseWrapper.getContentAsByteArray(), StandardCharsets.UTF_8);
                //输出到output
                ActiveSpan.tag("output", responseBody);
            } catch (Exception e) {
                log.warn("fail to build http log", e);
            } finally {
                //这一行必须添加,否则就一直不返回
                responseWrapper.copyBodyToResponse();
            }
        }
    }
}

效果如下(get请求):
在这里插入图片描述
效果如下(post请求):
在这里插入图片描述

方式三:通过 trace 和 Aop 去实现

在此就不细说了,这个也是一种方案

参考文章
【1】skywalking环境搭建(windows)
【2】windows下安装skywalking 9.2
【3】skywalking9.1结合logback配置日志收集
【4】SpringBoot集成Skywalking日志收集
【5】skywalking展示http请求和响应

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2300328.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

IntelliJ IDEA 接入 AI 编程助手(Copilot、DeepSeek、GPT-4o Mini)

IntelliJ IDEA 接入 AI 编程助手&#xff08;Copilot、DeepSeek、GPT-4o Mini&#xff09; &#x1f4ca; 引言 近年来&#xff0c;AI 编程助手已成为开发者的高效工具&#xff0c;它们可以加速代码编写、优化代码结构&#xff0c;并提供智能提示。本文介绍如何在 IntelliJ I…

【机器学习】深入浅出KNN算法:原理解析与实践案例分享

在机器学习中&#xff0c;K-最近邻算法&#xff08;K-Nearest Neighbors, KNN&#xff09;是一种既直观又实用的算法。它既可以用于分类&#xff0c;也可以用于回归任务。本文将简单介绍KNN算法的基本原理、优缺点以及常见应用场景&#xff0c;并通过一个简单案例帮助大家快速入…

vscode的一些实用操作

1. 焦点切换(比如主要用到使用快捷键在编辑区和终端区进行切换操作) 2. 跳转行号 使用ctrl g,然后输入指定的文件内容&#xff0c;即可跳转到相应位置。 使用ctrl p,然后输入指定的行号&#xff0c;回车即可跳转到相应行号位置。

JavaEE基础 Tomcat与Http (下)

目录 1.HTTP 协议 1.1 HTTP 协议概念 1.2. 无状态协议 1.3. HTTP1.0 和 HTTP1.1 1.4 请求协议和响应协议 ​编辑 1.5 请求协议 1.5.1 常见的请求协议 1.5.2 GET 请求 1.5.3 POST请求 1.5.4 响应协议 1.HTTP 协议 Http浏览器访问东西都是遵循的Http协议。 1.1 HTTP 协议…

【Linux】【进程】epoll内核实现总结+ET和LT模式内核实现方式

【Linux】【网络】epoll内核实现总结ET和LT模式内核实现方式 1.epoll的工作原理 eventpoll结构 当某一进程调用epoll_create方法时&#xff0c;Linux内核会创建一个eventpoll结构体&#xff0c;这个结构体中有两个成员与epoll的使用方式密切相关. struct eventpoll{..../*红…

英码科技基于昇腾算力实现DeepSeek离线部署

DeepSeek-R1 模型以其创新架构和高效能技术迅速成为行业焦点。如果能够在边缘进行离线部署&#xff0c;不仅能发挥DeepSeek大模型的效果&#xff0c;还能确保数据处理的安全性和可控性。 英码科技作为AI算力产品和AI应用解决方案服务商&#xff0c;积极响应市场需求&#xff0…

【SQL】SQL约束

&#x1f384;约束 &#x1f4e2;作用:是用于限制存储再表中的数据。可以再创建表/修改表时添加约束。 &#x1f4e2;目的:保证数据库中数据的正确、有效性和完整性。 &#x1f4e2;对于一个字段可以同时添加多个约束。 &#x1f384;常用约束: 约束分类 约束 描述关键字非…

解决 `pip is configured with locations that require TLS/SSL` 错误

问题描述 在使用 pip 安装 Python 包时&#xff0c;可能会遇到以下错误&#xff1a; WARNING: pip is configured with locations that require TLS/SSL, however the ssl module in Python is not available.这意味着 Python 的 ssl 模块未正确安装或配置&#xff0c;导致 p…

Python 面向对象的三大特征

前言&#xff1a;本篇讲解面向对象的三大特征&#xff08;封装&#xff0c;继承&#xff0c;多态&#xff09;&#xff0c;还有比较细致的&#xff08;类属性类方法&#xff0c;静态方法&#xff09;&#xff0c;分步骤讲解&#xff0c;比较适合理清楚三大特征的思路 面向对象的…

机器学习_18 K均值聚类知识点总结

K均值聚类&#xff08;K-means Clustering&#xff09;是一种经典的无监督学习算法&#xff0c;广泛应用于数据分组、模式识别和降维等领域。它通过将数据划分为K个簇&#xff0c;使得簇内相似度高而簇间相似度低。今天&#xff0c;我们就来深入探讨K均值聚类的原理、实现和应用…

从低清到4K的魔法:FlashVideo突破高分辨率视频生成计算瓶颈(港大港中文字节)

论文链接&#xff1a;https://arxiv.org/pdf/2502.05179 项目链接&#xff1a;https://github.com/FoundationVision/FlashVideo 亮点直击 提出了 FlashVideo&#xff0c;一种将视频生成解耦为两个目标的方法&#xff1a;提示匹配度和视觉质量。通过在两个阶段分别调整模型规模…

Nuclei 使用手册

Nuclei 是一个开源的快速、高效的漏洞扫描工具&#xff0c;主要用于网络安全领域的漏洞检测。它由 go 语言开发&#xff0c;设计目的是为了高效地扫描 Web 应用程序、网络服务等目标&#xff0c;帮助安全研究人员、渗透测试人员以及红队成员发现潜在的漏洞。 下载链接&#xf…

python学opencv|读取图像(六十七)使用cv2.convexHull()函数实现图像轮廓凸包标注

【1】引言 前序学习进程中&#xff0c;已经初步探索了对图像轮廓的矩形标注和圆形标注&#xff1a; python学opencv|读取图像&#xff08;六十五&#xff09;使用cv2.boundingRect()函数实现图像轮廓矩形标注-CSDN博客 但实际上&#xff0c;这两种标注方法都是大致的&#x…

基于SpringBoot的“高校创新创业课程体系”的设计与实现(源码+数据库+文档+PPT)

基于SpringBoot的“高校创新创业课程体系”的设计与实现&#xff08;源码数据库文档PPT) 开发语言&#xff1a;Java 数据库&#xff1a;MySQL 技术&#xff1a;SpringBoot 工具&#xff1a;IDEA/Ecilpse、Navicat、Maven 系统展示 系统整体功能图 系统首页界面 个人中心界…

前端带样式导出excel表格,html表格生成带样式的excel表格

众所周知&#xff0c;前端生成表格通常是用xlsx、excel.js等js库&#xff0c;但这些库想要生成时增加excel样式会很麻烦。 有这么一个js库把html表格连样式带数据一并导出为excel表格: html-table-to-excel npm install html-table-to-excel 使用 html表格&#xff1a; <…

【Linux】【网络】Libevent 内核实现简略版

【Linux】【网络】Libevent 内核实现简略版 1 event_base结构–>相当于Reactor 在使用libevent之前&#xff0c;就必须先创建这个结构。 以epoll为例&#xff1a; 1.1evbase void* evbase-->epollop结构体&#xff08;以epoll为例&#xff09; libevent通过一个void…

VScode内接入deepseek包过程(本地部署版包会)

目录 1. 首先得有vscode软件 2. 在我们的电脑本地已经部署了ollama&#xff0c;我将以qwen作为实验例子 3. 在vscode上的扩展商店下载continue 4. 下载完成后&#xff0c;依次点击添加模型 5. 在这里可以添加&#xff0c;各种各样的模型&#xff0c;选择我们的ollama 6. 选…

Ubuntu虚拟机NDK编译ffmpeg

目录 一、ffmpeg源码下载1、安装git(用于下载ffmpeg源码)2、创建源码目录&#xff0c;下载ffmpeg源码 二、下载ubuntu对应的NDK&#xff0c;并解压到opt下1、下载并解压2、配置 ~/.bashrc 三、源码编译、1、创建编译脚本2、脚本文件内容3、设置可执行权限并运行4、编译的结果在…

机器学习:k近邻

所有代码和文档均在golitter/Decoding-ML-Top10: 使用 Python 优雅地实现机器学习十大经典算法。 (github.com)&#xff0c;欢迎查看。 K 邻近算法&#xff08;K-Nearest Neighbors&#xff0c;简称 KNN&#xff09;是一种经典的机器学习算法&#xff0c;主要用于分类和回归任务…

讯飞唤醒+VOSK语音识别+DEEPSEEK大模型+讯飞离线合成实现纯离线大模型智能语音问答。

在信息爆炸的时代&#xff0c;智能语音问答系统正以前所未有的速度融入我们的日常生活。然而&#xff0c;随着数据泄露事件的频发&#xff0c;用户对于隐私保护的需求日益增强。想象一下&#xff0c;一个无需联网、即可响应你所有问题的智能助手——这就是纯离线大模型智能语音…