深入解析PID控制算法:从理论到实践的完整指南

news2025/3/14 1:46:02

前言

大家好,今天我们介绍一下经典控制理论中的PID控制算法,并着重讲解该算法的编码实现,为实现后续的倒立摆样例内容做准备。 众所周知,掌握了 PID ,就相当于进入了控制工程的大门,也能为更高阶的控制理论学习打下基础。 在很多的自动化控制领域。都会遇到PID控制算法,这种算法具有很好的控制模式,可以让系统具有很好的鲁棒性。

基本介绍

PID 深入理解

(1)闭环控制系统:讲解 PID 之前,我们先解释什么是闭环控制系统。简单说就是一个有输入有输出的系统,输入能影响输出。一般情况下,人们也称输出为反馈,因此也叫闭环反馈控制系统。比如恒温水池,输入就是加热功率,输出就是水温度;比如冷库,输入是空调功率,输出是内部温度。

(2)什么是PID:英文分解开就是:比例(proportional)、积分(integral)、微分(derivative),其根据系统反馈,通过比例,积分和微分三个部分的计算,动态调整系统输入,确保被控量稳定在人们设定的目标值附近。PID 是目前最常见的应用于闭环反馈控制系统的算法,三个部分可以只用一个(P,I,D),也可以只用两个(PI,PD),也可以三个一起用(PID),非常灵活。

(3)PID控制原理图与表达式:

上面的控制原理图与下面的数学表达式是相互对应的。

setpoint 为设定值,也叫目标值;output(t) 是系统反馈值,随时间变化;e(t) 是设定值与反馈值的差值,由于反馈总是作为被减数,因此也称为负反馈控制算法;Kp 是比例系数,Kp * e(t) 就是 PID 的比例部分;Ki 是积分系数,Ki 乘以 e(t) 对时间的积分,就是 PID 的积分部分;Kd 是微分系数,Kd 乘以 e(t) 对时间的微分,就是 PID 的微分部分。通常情况下,三个系数都是正数,但三个部分正负号并不一定相同,相互之间有抵消和补偿。三个部分之和,就是系统输入值 input(t)。整个控制系统的目标就是让差值 e(t) 稳定到 0。

(4)我们以恒温水池为例,讲解 PID 的三个部分:其中 input(t) 为加热功率,output(t) 为水池温度,setpoint 假设为 36 度, e(t) 为 setpoint 与当前温度的差值 。

比例部分:比例部分最直观,也比较容易理解,举例而言:假设当前水温为 20 度,差值 e 为 36 - 20 = 16 度,乘上比例系数 Kp ,得到加热功率,于是温度就会慢慢上涨;如果水温超过了设定温度,比如 40 度,差值 e 为 36 - 40 = -4 度,则停止加热,让热量耗散,温度就会慢慢下降。

微分部分:只有比例部分,我们可以想象出水池温度的变化通常会比较大,而且很难恒定,这样的水池不能算是恒温水池。解决办法是引入差值 e(t) 的微分,也就是 e(t) 对时间的导数。通过数学计算,可得导数为水池温度的斜率负数:

根据求导结果,我们分两种情况讨论微分部分对比例部分的作用:当差值 e(t) 扩大时:微分部分将与比例部分同正负号,对比例部分进行补偿,更好的抑制差值扩大;当差值 e(t) 缩小时:微分部分将与比例部分异号,对比例部分进行抵消,防止系统输出过冲。综合两种情况,可以认为微分部分提供了一种预测性的调控作用,通过考虑差值 e(t) 的未来走势,更精细地调整系统输入,从而让系统输出逐渐收敛到目标值。

积分部分:只有比例和微分部分,在某些场景下会失灵。举例而言,假如我们只使用 PD 算法。此时水池的室外温度非常低,热量散失非常快。当加热到某个温度的时候(比如 30 度),温度可能再也无法上涨。这种情况,称之为系统的稳态误差。我们分两部分解释原因:比例部分:由于差值 e(t) 不那么大了,比例部分会比较小,每次增加的热量正好被耗散掉,因此温度不会继续上升;微分部分:由于温度基本恒定,微分部分将约为零,也无法对比例部分进行补偿。解决办法是引入差值 e(t) 的积分,也就是 e(t) 乘以单位时间并不断累加,数学表达式如下:

假设温度停在了 30 度,不再上升,此时,积分部分会随着时间的推移而不断增加,相当于对比例部分进行补偿,从而增加加热功率,最终温度将继续上升。下面的动图比较形象地展示了三个参数对系统输出的影响:

(5)PID 为什么被称为启发式控制算法:

第一,PID 的三个参数并非基于严格的数学计算得到,而是靠工程师的直觉和经验。第二,PID 算法调参的目标是可用,只要实际效果不错就行,并不追求最优解。第三,PID 不依赖精确的数学模型,就能进行有效的控制。因此看起来更像是一种基于实践和实际效果的启发式方法,而不是一个理论上推导出来的控制策略。(6)介绍一种 PID 调参方法:Ziegler-Nichols(齐格勒-尼科尔斯)最终值振荡法第一,将微分系数 Kd 和积分系数 Kp 都设置为 0,只保留比例系数。第二,不断增加比例系数,直到达到无衰减的持续振荡,此时的比例系数称为 Ku ,此时的振荡周期为 Tu。第三,使用临界系数和振荡周期设置 PID 参数:

比例系数:Kp = 0.60 * Ku积分系数:Ki = 2 * Kp / Tu微分系数:Kd = Kp * Tu / 8

PID 编码实现

这部分我们主要参考 Arduino 的 PID 库 Arduino-PID-Library,分八步实现一个实际可用的 PID 算法库。接下来的每一步都需要大家认真的阅读,因为涉及到很多的细节。

特别提示:由于本节讲解 PID 的实现,我们将以 PID 作为第一视角,如果提到 input ,指的是 PID 算法输入,相当于上节中的系统输出 output(t),即恒温水池的温度;如果提到 ouput,指的是 PID 算法输出,相当于上节中的系统输入 input(t),即加热功率。

初始版本

代码实现 PID 算法,面临最大的困惑是如何实现积分和微分。正如上一节所说,积分可转化为差值 e(t) 乘以采样间隔并不断累加;微分可转换为求两次采样的差值 e(t) 的斜率。于是有了如下代码,请读者关注代码注释(可以直接拿去跑)。

#include <iostream>#include <chrono>#include <thread>

class PIDController {public:explicit PIDController() {InitTime();}

PIDController(double kp_para, double ki_para, double kd_para) : kp_(kp_para), ki_(ki_para), kd_(kd_para) {
    InitTime();
}

void InitTime() {
    last_time_ = GetMillis();
}

double Compute(double setpoint, double input) {
    uint64_t now = GetMillis();
    
    double time_change = static_cast<double>(now - last_time_);

    double error = setpoint - input;
    printf("error: %f\n", error);

    err_sum_ += error * time_change;

    double derivative = (error - last_error_) / time_change;

    double output = kp_ * error + ki_ * err_sum_ + kd_ * derivative;

    last_error_ = error;
    last_time_ = now;
    return output;
}

void set_tunings(double kp_para, double ki_para, double kd_para) {
    kp_ = kp_para;
    ki_ = ki_para;
    kd_ = kd_para;
}

private:double kp_;double ki_;double kd_;

double last_error_ = 0;
double err_sum_ = 0;    
uint64_t last_time_ = 0; 

uint64_t GetMillis() {
    return std::chrono::duration_cast<std::chrono::milliseconds>(
                     std::chrono::steady_clock::now().time_since_epoch())
                     .count();
}

};

int main() {PIDController pid;pid.set_tunings(10, 0.01, 0.01);

double setpoint = 36;
double temperature = 20;

std::this_thread::sleep_for(std::chrono::seconds(1));

for (int i = 0; i < 100; ++i) {
    double control_signal = pid.Compute(setpoint, temperature);

    temperature += control_signal * 0.1;
    temperature *= 0.99;
    
    std::cout << "Temperature: " << temperature << std::endl;

    std::this_thread::sleep_for(std::chrono::seconds(1));
}

return 0;

}

固定采样间隔

初始版本的 PID 的采样间隔是由外部循环控制的,会导致两个问题:第一,无法获取一致的 PID 行为,因为外部有可能调用,也有可能不调用;第二,每次都要根据采样间隔计算微分和积分部分,这涉及到浮点运算。效率比较低。好的办法是固定采用间隔,两个问题都能解决,看下面的代码以及注释(可以直接拿去跑)。

#include <iostream>#include <chrono>#include <thread>

class PIDController {public:explicit PIDController() {InitTime();}

PIDController(double kp_para, double ki_para, double kd_para) : kp_(kp_para), ki_(ki_para), kd_(kd_para) {
    InitTime();
}

void InitTime() {
    last_time_ = GetMillis();
}

void set_tunings(double kp_para, double ki_para, double kd_para) {
    double sample_time_in_sec = static_cast<double>(sample_time_) / 1000.0;
    kp_ = kp_para;
    // sum = ki * (error(0) * dt + error(1) * dt + ... + error(n) * dt) = (ki * dt) * (error(0) + error(1) + ... + error(n))
    ki_ = ki_para * sample_time_in_sec;
    // derivative = kd * (error(n) - error(n-1)) / dt = (kd / dt) * (error(n) - error(n-1))
    kd_ = kd_para / sample_time_in_sec;
}

void set_sample_time(uint64_t new_sample_time) {
    if (new_sample_time > 0) {
        double ratio = static_cast<double>(new_sample_time) / static_cast<double>(sample_time_);
        ki_ = ki_ * ratio;
        kd_ = kd_ / ratio;
        sample_time_ = new_sample_time;
    }
}

double Compute(double setpoint, double input) {
    uint64_t now = GetMillis();
    uint64_t time_change = now - last_time_;

    if (time_change < sample_time_) {
        return last_output_;
    }

    double error = setpoint - input;
    printf("error: %f\n", error);

    err_sum_ += error;

    double derivative = error - last_error_;

    double output = kp_ * error + ki_ * err_sum_ + kd_ * derivative;

    last_error_ = error;
    last_time_ = now;
    last_output_ = output;
    return output;
}

private:double kp_;double ki_;double kd_;

double last_error_ = 0.0;
double err_sum_ = 0.0;
uint64_t last_time_ = 0UL;

double last_output_ = 0.0;
uint64_t sample_time_ = 1000UL; // 1 second

uint64_t GetMillis() {
    return std::chrono::duration_cast<std::chrono::milliseconds>(
                     std::chrono::steady_clock::now().time_since_epoch())
                     .count();
}

};

int main() {PIDController pid;pid.set_tunings(1, 0.2, 0.02);pid.set_sample_time(1000); // Set sample time to 1 second

double setpoint = 36;
double temperature = 20;

std::this_thread::sleep_for(std::chrono::seconds(1));

for (int i = 0; i < 1000; ++i) {
    double control_signal = pid.Compute(setpoint, temperature);

    temperature += control_signal * 0.1;
    temperature *= 0.99;

    std::cout << "Temperature: " << temperature << std::endl;

    std::this_thread::sleep_for(std::chrono::milliseconds(200));
}

return 0;

}

消除 spike

spike 的英文含义是尖刺,这里指的是当系统运行过程中,突然改变 setpoint 时, PID 的微分部分会因 setpoint 的突然切换而生成一个极大的导数,导致算法输出值 output 将产生一次急剧变化,这就是 spike。比如恒温水池的初始 setpoint 是 36 度,运行过程中,突然改为 50 度。相当于在一个采样周期内,差值 error 突然增加了 14 ,再除以采样周期,数值将会非常大,如下图所示。

解决办法是将 setpoint 从 PID 的微分部分请出去,理论依据是:差值 error 的导数也是算法输入(恒温水池的温度)的斜率负数:

代码实现如下:

#include <iostream>#include <chrono>#include <thread>

class PIDController {public:explicit PIDController() {InitTime();}PIDController(double kp_para, double ki_para, double kd_para) : kp_(kp_para), ki_(ki_para), kd_(kd_para) {InitTime();}

void InitTime() {
    last_time_ = GetMillis();
}

void set_tunings(double kp_para, double ki_para, double kd_para) {
    double sample_time_in_sec = static_cast<double>(sample_time_) / 1000.0;
    kp_ = kp_para;
    ki_ = ki_para * sample_time_in_sec;
    kd_ = kd_para / sample_time_in_sec;
}

void set_sample_time(uint64_t new_sample_time) {
    if (new_sample_time > 0) {
        double ratio = static_cast<double>(new_sample_time) / static_cast<double>(sample_time_);
        ki_ = ki_ * ratio;
        kd_ = kd_ / ratio;
        sample_time_ = new_sample_time;
    }
}

double Compute(double setpoint, double input) {
    uint64_t now = GetMillis();
    uint64_t time_change = now - last_time_;

    if (time_change < sample_time_) {
        return last_output_;
    }

    double error = setpoint - input;
    printf("error: %f\n", error);

    err_sum_ += error;

    double derivative = input - last_input_;
    double output = kp_ * error + ki_ * err_sum_ - kd_ * derivative;

    last_input_ = input;
    last_time_ = now;
    last_output_ = output;
    return output;
}

private:double kp_;double ki_;double kd_;

double last_input_ = 0.0;
double err_sum_ = 0.0;
uint64_t last_time_ = 0UL;

double last_output_ = 0.0;
uint64_t sample_time_ = 1000UL; // 1 second

uint64_t GetMillis() {
    return std::chrono::duration_cast<std::chrono::milliseconds>(
                     std::chrono::steady_clock::now().time_since_epoch())
                     .count();
}

};

int main() {PIDController pid;pid.set_tunings(1, 0.2, 0.02);pid.set_sample_time(1000);

double setpoint = 36;
double temperature = 20;

std::this_thread::sleep_for(std::chrono::seconds(1));

for (int i = 0; i < 1000; ++i) {
    double control_signal = pid.Compute(setpoint, temperature);

    temperature += control_signal * 0.1;
    temperature *= 0.99;

    std::cout << "Temperature: " << temperature << std::endl;

    if (i == 200) {
        setpoint = 50; 
        std::cout << "Setpoint changed to 50" << std::endl;
    }

    std::this_thread::sleep_for(std::chrono::milliseconds(200));
}

return 0;

}

动态改参

好的 PID 算法,允许在系统运行过程中,调整 PID 参数。问题的关键是,运行中途修改 PID 参数,如何保持算法输出仍然平稳,对系统状态不产生额外冲击。仔细分析 PID 的三个部分,当对应的参数改变时,影响最大的是积分部分,比例和微分两部分都只影响当前值,而积分部分将会更改历史值。

解决办法是放弃先计算积分和,最后乘以积分系数的做法,而是让积分系数参与每一次积分运算并累加起来:

如此一来,即使更新了积分参数,也只影响当前值,历史值由于被存储起来,因此不会改变,代码实现如下 。

#include <iostream>#include <chrono>#include <thread>

class PIDController {public:explicit PIDController() {InitTime();}PIDController(double kp_para, double ki_para, double kd_para) : kp_(kp_para), ki_(ki_para), kd_(kd_para) {InitTime();}

void InitTime() {
    last_time_ = GetMillis();
}

void set_tunings(double kp_para, double ki_para, double kd_para) {
    double sample_time_in_sec = static_cast<double>(sample_time_) / 1000.0;
    kp_ = kp_para;
    ki_ = ki_para * sample_time_in_sec;
    kd_ = kd_para / sample_time_in_sec;
}

void set_sample_time(uint64_t new_sample_time) {
    if (new_sample_time > 0) {
        double ratio = static_cast<double>(new_sample_time) / static_cast<double>(sample_time_);
        ki_ = ki_ * ratio;
        kd_ = kd_ / ratio;
        sample_time_ = new_sample_time;
    }
}

double Compute(double setpoint, double input) {
    uint64_t now = GetMillis();
    uint64_t time_change = now - last_time_;

    if (time_change < sample_time_) {
        return last_output_;
    }

    double error = setpoint - input;
    printf("error: %f\n", error);

    err_item_sum_ += ki_ * error;

    double derivative = input - last_input_;

    double output = kp_ * error + err_item_sum_ - kd_ * derivative;

    last_input_ = input;
    last_time_ = now;
    last_output_ = output;
    return output;
}

private:double kp_;double ki_;double kd_;

double last_input_ = 0.0;
double err_item_sum_ = 0.0;
uint64_t last_time_ = 0UL;

double last_output_ = 0.0;
uint64_t sample_time_ = 1000UL; // 1 second

uint64_t GetMillis() {
    return std::chrono::duration_cast<std::chrono::milliseconds>(
                     std::chrono::steady_clock::now().time_since_epoch())
                     .count();
}

};

int main() {PIDController pid;pid.set_tunings(1, 0.2, 0.02);pid.set_sample_time(1000);

double setpoint = 36;
double temperature = 20;

std::this_thread::sleep_for(std::chrono::seconds(1));

for (int i = 0; i < 1000; ++i) {
    double control_signal = pid.Compute(setpoint, temperature);

    temperature += control_signal * 0.1;
    temperature *= 0.99;

    std::cout << "Temperature: " << temperature << std::endl;

    if (i == 200) {
        pid.set_tunings(1, 0.5, 0.02);
        std::cout << "PID coefficients changed, 1, 0.2, 0.02 ->1, 0.5, 0.02" << std::endl;
    }    

    std::this_thread::sleep_for(std::chrono::milliseconds(200));
}

return 0;

}

设置算法输出限制

通常情况下,PID 算法输出是有一定限制的,比如恒温水池的加热功率不可能无限大,更不可能小于零。当 PID 的算法输出为负数时,实际是停止加热,也就是功率为零。因此需要给 PID 算法添加限制范围,代码实现如下。补充:为了看到输出限制的作用,这次我们把目标温度定为 90 度。

#include <iostream>#include <chrono>#include <thread>

class PIDController {public:explicit PIDController() {InitTime();}PIDController(double kp_para, double ki_para, double kd_para) : kp_(kp_para), ki_(ki_para), kd_(kd_para) {InitTime();}

void InitTime() {
    last_time_ = GetMillis();
}

void set_tunings(double kp_para, double ki_para, double kd_para) {
    double sample_time_in_sec = static_cast<double>(sample_time_) / 1000.0;
    kp_ = kp_para;
    ki_ = ki_para * sample_time_in_sec;
    kd_ = kd_para / sample_time_in_sec;
}

void set_sample_time(uint64_t new_sample_time) {
    if (new_sample_time > 0) {
        double ratio = static_cast<double>(new_sample_time) / static_cast<double>(sample_time_);
        ki_ = ki_ * ratio;
        kd_ = kd_ / ratio;
        sample_time_ = new_sample_time;
    }
}

void set_output_limits(double min, double max) {
    if (min > max) {
        return;
    }
    out_min_ = min;
    out_max_ = max;

    SetLimits(last_output_);
    SetLimits(err_item_sum_);
}

double Compute(double setpoint, double input) {
    uint64_t now = GetMillis();
    uint64_t time_change = now - last_time_;

    if (time_change < sample_time_) {
        return last_output_;
    }

    double error = setpoint - input;
    printf("error: %f\n", error);

    err_item_sum_ += ki_ * error;
    SetLimits(err_item_sum_);

    double derivative = input - last_input_;
    double output = kp_ * error + err_item_sum_ - kd_ * derivative;
    SetLimits(output);

    last_input_ = input;
    last_time_ = now;
    last_output_ = output;
    return output;
}

private:double kp_;double ki_;double kd_;

double last_input_ = 0.0;
double last_output_ = 0.0;
double err_item_sum_ = 0.0;

double out_min_ = 0.0;
double out_max_ = 0.0;

uint64_t last_time_ = 0UL;
uint64_t sample_time_ = 1000UL; // 1 second

uint64_t GetMillis() {
    return std::chrono::duration_cast<std::chrono::milliseconds>(
                     std::chrono::steady_clock::now().time_since_epoch())
                     .count();
}

void SetLimits(double& val) {
    if (val > out_max_) {
        printf("val: %f > out_max_: %f\n", val, out_max_);
        val = out_max_;
    } else if (val < out_min_) {
        printf("val: %f > out_min_: %f\n", val, out_min_);
        val = out_min_;
    } else {
        ; // Do nothing
    }
}    

};

int main() {PIDController pid;pid.set_tunings(1, 0.5, 0.05);pid.set_sample_time(1000);pid.set_output_limits(0, 100);

double setpoint = 90;
double temperature = 20;

std::this_thread::sleep_for(std::chrono::seconds(1));

for (int i = 0; i < 1000; ++i) {
    double control_signal = pid.Compute(setpoint, temperature);

    temperature += control_signal * 0.1;
    temperature *= 0.99;

    std::cout << "Temperature: " << temperature << std::endl;

    std::this_thread::sleep_for(std::chrono::milliseconds(200));
}

return 0;

}

添加开关控制

好的 PID 算法应允许使用者动态启停,比如恒温水池运行过程中,由于某种原因,管理人员需要停掉自动控制,改为手动控制,操作结束后,重新启动自动控制。实现动态停止并不复杂,只要 PID 内部加一个开关标识,当关闭时,PID 算法内部不执行计算,外部直接使用人工操作值替代算法输出值进行控制。但问题的关键是,当从手动模式重新改为自动模式时,需要保证恒温水池温度不出现大的抖动,即 PID 算法能接续人类的控制状态,实现平滑过渡。解决办法是重新初始化:当从手动切换到自动时,将水池温度和人工操作值传给 PID ,更新 PID 内部的历史输入值和历史积分值。如此一来,当 PID 重新启动时,就能接续人类的控制结果,平滑启动,如图所示。

#include <iostream>#include <chrono>#include <thread>

enum PID_MODE: uint8_t {PID_MODE_MANUAL = 0,PID_MODE_AUTOMATIC = 1};

class PIDController {public:explicit PIDController() {InitTime();}

PIDController(double kp_para, double ki_para, double kd_para) : kp_(kp_para), ki_(ki_para), kd_(kd_para) {
    InitTime();
}

void InitTime() {
    last_time_ = GetMillis();
}

void set_tunings(double kp_para, double ki_para, double kd_para) {
    double sample_time_in_sec = static_cast<double>(sample_time_) / 1000.0;
    kp_ = kp_para;
    ki_ = ki_para * sample_time_in_sec;
    kd_ = kd_para / sample_time_in_sec;
}

void set_sample_time(uint64_t new_sample_time) {
    if (new_sample_time > 0) {
        double ratio = static_cast<double>(new_sample_time) / static_cast<double>(sample_time_);
        ki_ = ki_ * ratio;
        kd_ = kd_ / ratio;
        sample_time_ = new_sample_time;
    }
}

void set_output_limits(double min, double max) {
    if (min > max) {
        return;
    }
    out_min_ = min;
    out_max_ = max;

    SetLimits(last_output_);
    SetLimits(err_item_sum_);
}

void InitInnaState(double input, double output) {
    last_input_ = input;
    err_item_sum_ = output;
    SetLimits(err_item_sum_);
}

void set_auto_mode(PID_MODE mode, double input = 0.0, double output = 0.0) {
    bool new_auto = (mode == PID_MODE_AUTOMATIC);
    if (new_auto == true && in_auto_ == false) {
        InitInnaState(input, output);
    }
    in_auto_ = new_auto;
    std::cout << "PID mode: " << (in_auto_ ? "Automatic" : "Manual") << std::endl;
}

double Compute(double setpoint, double input) {
    if (in_auto_ == false) {
        return last_output_;
    }

    uint64_t now = GetMillis();
    uint64_t time_change = now - last_time_;

    if (time_change < sample_time_) {
        return last_output_;
    }

    double error = setpoint - input;
    printf("error: %f\n", error);

    err_item_sum_ += ki_ * error;
    SetLimits(err_item_sum_);

    double derivative = input - last_input_;

    double output = kp_ * error + err_item_sum_ - kd_ * derivative;
    SetLimits(output);

    last_input_ = input;
    last_time_ = now;
    last_output_ = output;
    return output;
}

private:double kp_;double ki_;double kd_;

double last_input_ = 0.0;
double last_output_ = 0.0;
double err_item_sum_ = 0.0;

double out_min_ = 0.0;
double out_max_ = 0.0;

uint64_t last_time_ = 0UL;
uint64_t sample_time_ = 1000UL; // 1 second

// PID 内部状态控制量:false 表示手动模式,true 表示自动模式
bool in_auto_ = false;

uint64_t GetMillis() {
    return std::chrono::duration_cast<std::chrono::milliseconds>(
                     std::chrono::steady_clock::now().time_since_epoch())
                     .count();
}

void SetLimits(double& val) {
    if (val > out_max_) {
        printf("val: %f > out_max_: %f\n", val, out_max_);
        val = out_max_;
    } else if (val < out_min_) {
        val = out_min_;
    } else {
        ; // Do nothing
    }
}

};

int main() {PIDController pid;pid.set_tunings(1, 0.2, 0.02);pid.set_sample_time(1000);pid.set_output_limits(0, 100);

double setpoint = 36.0;
double temperature = 20.0;

std::this_thread::sleep_for(std::chrono::seconds(1));

pid.set_auto_mode(PID_MODE_AUTOMATIC);

for (int i = 0; i < 1000; ++i) {
    if (i == 200) {
        pid.set_auto_mode(PID_MODE_MANUAL);
        std::cout << "---->>> Switch to manual mode" << std::endl;
    }

    double control_signal = pid.Compute(setpoint, temperature);

    if (i >= 200 && i < 250) {
        control_signal = 3;
    }
    if (i >= 250 && i <= 300) {
        control_signal = 4;
    }

    std::cout << "--> Control signal: " << control_signal << std::endl;

    temperature += control_signal * 0.1;
    temperature *= 0.99;

    std::cout << "<-- Temperature: " << temperature << std::endl;

    if (i == 300) {
        pid.set_auto_mode(PID_MODE_AUTOMATIC, temperature, control_signal);
        std::cout << "---->>> Switch back to automatic mode" << std::endl;
    }

    std::this_thread::sleep_for(std::chrono::milliseconds(200));
}

return 0;

}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2299712.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

CNN手写数字识别1——模型搭建与数据准备

模型搭建 我们这次使用LeNet模型&#xff0c;LeNet是一个经典的卷积神经网络&#xff08;Convolutional Neural Network, CNN&#xff09;架构&#xff0c;最初由Yann LeCun等人在1998年提出&#xff0c;用于手写数字识别任务 创建一个文件model.py。实现以下代码。 源码 #…

深度学习04 数据增强、调整学习率

目录 数据增强 常用的数据增强方法 调整学习率 学习率 调整学习率 ​调整学习率的方法 有序调整 等间隔调整 多间隔调整 指数衰减 余弦退火 ​自适应调整 自定义调整 数据增强 数据增强是通过对训练数据进行各种变换&#xff08;如旋转、翻转、裁剪等&#xff09;&am…

PH热榜 | 2025-02-16

1. Cal.com Routing 标语&#xff1a;根据客户线索&#xff0c;系统会智能地自动安排约会。 介绍&#xff1a;告别繁琐的排期&#xff01;Cal.com 推出了新的路由功能&#xff0c;能更智能地分配预约&#xff0c;让你的日程安排更顺畅。这项功能运用智能逻辑和深入的数据分析…

数据库基本概念及基本使用

数据库基本概念 什么是数据库&#xff1a; 数据库特点&#xff1a; 常见的数据库软件&#xff1a; 不同的公司进行不同的实践&#xff0c;生成了不同的产品。 比如买汽车&#xff0c;汽车只是一个概念&#xff0c;你要买哪个牌子哪个型号的汽车&#xff0c;才是真正的汽车的一…

gozero实现数据库MySQL单例模式连接

在 GoZero 框架中实现数据库的单例连接可以通过以下步骤来完成。GoZero 使用 gorm 作为默认的数据库操作框架&#xff0c;接下来我会展示一个简单的单例模式实现。 ### 1. 定义数据库连接的单例结构 首先&#xff0c;你需要定义一个数据库连接的结构体&#xff0c;并在初始化…

CSS flex布局 列表单个元素点击 本行下插入详情独占一行

技术栈&#xff1a;Vue2 javaScript 简介 在实际开发过程中有遇到一个场景&#xff1a;一个list&#xff0c;每行个数固定&#xff0c;点击单个元素后&#xff0c;在当前行与下一行之间插入一行元素详情&#xff0c;便于更直观的查看到对应的数据详情。 这种情形&#xff0c…

无人机航迹规划: 梦境优化算法(Dream Optimization Algorithm,DOA)求解无人机路径规划MATLAB

一、梦境优化算法 梦境优化算法&#xff08;Dream Optimization Algorithm&#xff0c;DOA&#xff09;是一种新型的元启发式算法&#xff0c;其灵感来源于人类的梦境行为。该算法结合了基础记忆策略、遗忘和补充策略以及梦境共享策略&#xff0c;通过模拟人类梦境中的部分记忆…

权限五张表

重点&#xff1a;权限五张表的设计 核心概念&#xff1a; 在权限管理系统中&#xff0c;经典的设计通常涉及五张表&#xff0c;分别是用户表、角色表、权限表、用户角色表和角色权限表。这五张表的设计可以有效地管理用户的权限&#xff0c;确保系统的安全性和灵活性。 用户&…

Docker-数据卷

1.数据卷 容器是隔离环境&#xff0c;容器内程序的文件、配置、运行时产生的容器都在容器内部&#xff0c;我们要读写容器内的文件非常不方便。大家思考几个问题&#xff1a; 如果要升级MySQL版本&#xff0c;需要销毁旧容器&#xff0c;那么数据岂不是跟着被销毁了&#xff1…

IT : 是工作還是嗜好? Delphi 30周年快乐!

又到2月14日了, 自从30多年前收到台湾宝蓝(Borland)公司一大包的3.5 磁盘片, 上面用黑色油性笔写着Delphi Beta开始, Delphi便和我的工作生涯有了密不可分的关系. 一年后Delphi大获成功, 自此对于使用Delphi的使用者来说2月14日也成了一个特殊的日子! 我清楚记得Delphi Beta使用…

DeepPose

目录 摘要 Abstract DeepPose 算法框架 损失函数 创新点 局限性 训练过程 代码 总结 摘要 DeepPose是首个将CNN应用于姿态估计任务的模型。该模型在传统姿态估计方法的基础上&#xff0c;通过端到端的方式直接从图像中回归出人体关键点的二维坐标&#xff0c;避免了…

[HarmonyOS]鸿蒙(添加服务卡片)推荐商品 修改卡片UI(内容)

什么是服务卡片 &#xff1f; 鸿蒙系统中的服务卡片&#xff08;Service Card&#xff09;就是一种轻量级的应用展示形式&#xff0c;它可以让用户在不打开完整应用的情况下&#xff0c;快速访问应用内的特定功能或信息。以下是服务卡片的几个关键点&#xff1a; 轻量级&#…

DeepSeek R1 本地部署和知识库搭建

一、本地部署 DeepSeek-R1&#xff0c;是幻方量化旗下AI公司深度求索&#xff08;DeepSeek&#xff09;研发的推理模型 。DeepSeek-R1采用强化学习进行后训练&#xff0c;旨在提升推理能力&#xff0c;尤其擅长数学、代码和自然语言推理等复杂任务 。 使用DeepSeek R1, 可以大大…

领域驱动设计叕创新,平安保险申请DDD专利

DDD领域驱动设计批评文集 做强化自测题获得“软件方法建模师”称号 《软件方法》各章合集 见下图&#xff1a; 这个名字拼得妙&#xff1a;领域驱动设计模式。 是领域驱动设计&#xff1f;还是设计模式&#xff1f;还是领域驱动设计设计模式&#xff1f;和下面这个知乎文章的…

团体程序设计天梯赛-练习集——L1-041 寻找250

前言 10分的题&#xff0c;主要的想法就一个&#xff0c;按这个想法可以出几个写法 L1-041 寻找250 对方不想和你说话&#xff0c;并向你扔了一串数…… 而你必须从这一串数字中找到“250”这个高大上的感人数字。 输入格式&#xff1a; 输入在一行中给出不知道多少个绝对值…

C#控制台大小Console.SetWindowSize函数失效解决

在使用C#修改控制台大小相关API会失效. 由于VS将控制台由命令提示符变成了终端&#xff0c;因此在设置大小时会出现问题 测试代码&#xff1a; Console.SetWindowSize(100, 50);

spring boot 对接aws 的S3 服务,实现上传和查询

1.aws S3介绍 AWS S3&#xff08;Amazon Simple Storage Service&#xff09;是亚马逊提供的一种对象存储服务&#xff0c;旨在提供可扩展、高可用性和安全的数据存储解决方案。以下是AWS S3的一些主要特点和功能&#xff1a; 1.1. 对象存储 对象存储模型&#xff1a;S3使用…

25/2/16 <算法笔记> DirectPose

DirectPose 是一种直接从图像中预测物体的 6DoF&#xff08;位姿&#xff1a;6 Degrees of Freedom&#xff09;姿态 的方法&#xff0c;包括平移和平面旋转。它在目标检测、机器人视觉、增强现实&#xff08;AR&#xff09;和自动驾驶等领域中具有广泛应用。相比于传统的位姿估…

数据结构-8.Java. 七大排序算法(下篇)

本篇博客给大家带来的是排序的知识点, 由于时间有限, 分两天来写, 下篇主要实现最后一种排序算法: 归并排序。同时把中篇剩下的快排非递归实现补上. 文章专栏: Java-数据结构 若有问题 评论区见 欢迎大家点赞 评论 收藏 分享 如果你不知道分享给谁,那就分享给薯条. 你们的支持是…

DeepSeek私有化部署+JAVA通过API调用离线大模型问答

在当今快速发展的数字化时代&#xff0c;企业对于高效、灵活的技术解决方案需求日益增长。DeepSeek作为一款领先的智能搜索与分析平台&#xff0c;凭借其强大的数据处理能力和精准的搜索结果&#xff0c;已经成为众多企业提升运营效率的得力助手。为了更好地满足企业对数据安全…