RL--2

news2025/3/12 12:20:45

强化学习当中最难的两个点是:
1.reward delay;
2.agent的行为会影响到之后看到的东西,所以agent要学会探索世界;

关于强化学习的不同类型,可以分为以下三种:
一种是policy based:可以理解为它是去学习一个很强的actor,由actor去指导下一步的行动;
一种是value-based:学习一个好的critic,这个critic其实就是价值函数,由价值函数去指导做下一步的行动;
还有一种是当下最流行的二者结合的方法叫actor+critic,也是PPO 用的方法;
在这里插入图片描述

policy based

在这里插入图片描述
首先我们用神经网络去学习一个actor,他需要根据环境观察到的state(obervation)去得到action的output;
加下来,我们要判断这个action好不好,靠的是环境反馈的reward;
对于一次的游戏体验而已,reward是每次action累计的return的总和;
在这里插入图片描述
但是,我们知道游戏具有随机性,每次的整个游戏过程我们记录为T(s1,a1,r1…);
哪怕我们使用同一个actor,由于游戏本身的随机性T也是不一样的;
但是不同的actor得到的T的概率和倾向性肯定是不一样的;
比如说如果你的actor是见到敌人就呆住,那么你的T大概率就是敌人一出现你就挂了;
所以我们不能拿单次游戏的reward作为此actor的reward,我们要进行多次游戏,这就好比在T的分布中进行采样;N次采样取平均作为这个actor的reward;
在这里插入图片描述
接下来我们的目标是优化actor的参数去最大化游戏反馈的reward;
在这里插入图片描述
注意Trajactery对应得reward跟待优化的参数没关系,他是环境的反馈,所以可不可导无所谓;
在这里插入图片描述
在这里插入图片描述
这里要注意R(T)是某个trajactory完成后的reward,而不是某个action的reward,这个也很好理解;
在这里插入图片描述
关于这里为什么要取log的解释是,不同的action采样到的频次不一样,模型会提升采样到的多的action的概率,哪怕reward没有很高,所以要除以概率本身,这样子本来比较高概率的action的grad就会变小
在这里插入图片描述
注意R(T)如果都是正值应该不会有问题,也就意味着每个action都会被激励,只是激励有大有小,但是如果说采样过程中有个action没有采样到,不知道action a的reward是多少,这就会导致action a的概率比较低,所以最好给reward减去一个bias,这个bias是我们自己设计的。这样reward有正有负之后,可以去掉采样不均匀带来的一些影响
在这里插入图片描述
所以整个policy based RL的整体流程就是:现有一个初始化参数的actor,然后去sample(其实就是跟环境交互的过程)获取路径、行动、反馈,再拿上面三个去训练model,更新参数,其实log后面那部分和我们正常的深度学习网络一样的,(input就是s,label就是action a)只是前面会乘以整个路径的reward的系数,也就是把reward作用在这个actor上;
在这里插入图片描述
在这里插入图片描述
如果我们的enviroments和reward是model的话,可以直接训练;但如果不是,不能微分的话,就用policy gradient硬train一发;
在这里插入图片描述
这里的critic其实就是价值函数;
在这里插入图片描述
如何衡量价值函数好不好?很简单,价值函数的衡量越接近实际的reward越好;
在这里插入图片描述
我们需要给每一个action合理的reward;上述的同一个trajectory里面的每个action都是相同reward显然不合理,一个action的reward首先跟以往历史的action的reward无关,其次随时间会递减reward的影响;下图中的advantage function是相对于其他action,在当前actor采用本action的credit;
在这里插入图片描述
关于on policy,也就是采样数据=》更新model=>采样数据=》更新model的循环;
因为我们每次要根据trajectory最终的reward去计算每个action的credit,所以要等到一批数据采集完才能更新,当前的数据一旦更新完model就不能在用了,因为它只适用于当前的policy model,更新后policy model就变了;所以这个过程很繁琐耗时间;
off policy的意思就是我们训练的model和我们采集数据的model不是同一个model,我们可以随意选取一个actor去采集数据(大量数据),分布的事情可以靠分布之间的变换解决(关于这个变换后面的视频没有具体看,下次可以补上)
在这里插入图片描述
我们观察数据的actor的分布和实际train的actor的分布不能差太多,差太多以下近似公式会不成立
在这里插入图片描述
上图最后一项是待优化的函数:顾名思义:当前actor根据s采取的action的概率乘以对应的credit,我们希望其越大越好;

上面说到,我们不希望采样数据的分布和训练的actor分布差别太大,那么就需要用到限制,TRPO是额外加出来的限制,不好训练,用的少,PPO就是把限制加入到优化函数里面去了;然后关于beta的值是个动态调整的值,我们会自己设一个LKL最大最小值,超过最大值,就调小beta,反之亦然;这里要注意的是,KL计算的不是参数之间的距离,而是behaivor之间的距离;通用采样数据的s和a就可以计算;

在这里插入图片描述
PPO
在这里插入图片描述
PPO2的加了个clip来做,意思就是看图:如果A>0是正激励,就希望P越大越好,但是也不要太大,如果A<0是负激励,就希望P越小越好,但是也不要太小;
在这里插入图片描述
PPO就是紫色的线,可以看到PPO算法在RL中算是非常稳定和性能好的;
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2299653.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

SpringMVC新版本踩坑[已解决]

问题&#xff1a; 在使用最新版本springMVC做项目部署时&#xff0c;浏览器反复500&#xff0c;如下图&#xff1a; 异常描述&#xff1a; 类型异常报告 消息Request processing failed: java.lang.IllegalArgumentException: Name for argument of type [int] not specifie…

2025 pwn_A_childs_dream

文章目录 fc/sfc mesen下载和使用推荐 fc/sfc https://www.mesen.ca/docs/ mesen2安装&#xff0c;vscode安装zg 任天堂yyds w d 左右移动 u结束游戏 i崩溃或者卡死了 L暂停 D658地方有个flag 发现DEEE会使用他。且只有这个地方&#xff0c;maybe会输出flag&#xff0c;应…

pandas(11 分类数据和数据可视化)

前面内容&#xff1a;pandas(10 日期和Timedelta) 目录 一、Python Pandas 分类数据 1.1 pd.Categorical() 1.2 describe() 1.3 获取类别的属性 1.4 分类操作 1.5 分类数据的比较 二、Python Pandas 数据可视化 2.1 基础绘图&#xff1a;plot 2.2 条形图 2.3 直方…

Redis 03章——10大数据类型概述

一、which10 &#xff08;1&#xff09;一图 &#xff08;2&#xff09;提前声明 这里说的数据类型是value的数据类型&#xff0c;key的类型都是字符串 官网&#xff1a;Understand Redis data types | Docs &#xff08;3&#xff09;分别是 1.3.1redis字符串&#xff0…

bps是什么意思

本文来自DeepSeek "bps" 是 "bits per second" 的缩写&#xff0c;表示每秒传输的比特数&#xff0c;用于衡量数据传输速率。1 bps 即每秒传输 1 比特。 常见单位 bps&#xff1a;比特每秒 Kbps&#xff1a;千比特每秒&#xff08;1 Kbps 1,000 bps&am…

撕碎QT面具(1):Tab Widget转到某个Tab页

笔者未系统学过C语法&#xff0c;仅有Java基础&#xff0c;具体写法仿照于大模型以及其它博客。自我感觉&#xff0c;如果会一门对象语言&#xff0c;没必要先刻意学C&#xff0c;因为自己具有对象语言的基础&#xff0c;等需要用什么再学也不迟。毕竟不是专门学C去搞算法。 1…

项目版本号生成

需求 项目想要生成一个更新版本号&#xff0c;格式为v2.0.20250101。 其中v2.0为版本号&#xff0c;更新时进行配置&#xff1b;20250101为更新日期&#xff0c;版本更新时自动生成。 实现思路 创建一个配置文件version.properties&#xff0c;在其中配置版本号&#xff1b…

善筹网设计与实现(代码+数据库+LW)

摘 要 信息数据从传统到当代&#xff0c;是一直在变革当中&#xff0c;突如其来的互联网让传统的信息管理看到了革命性的曙光&#xff0c;因为传统信息管理从时效性&#xff0c;还是安全性&#xff0c;还是可操作性等各个方面来讲&#xff0c;遇到了互联网时代才发现能补上自…

使用 MindSpore 训练 DeepSeek-V3 模型

MindeSpore 已经适配 DeepSeek-V3 的训练推理啦&#xff0c;下面是使用 MindSpore 对DeepSeek-V3做训练的过程。 一、环境确认 这里呢我使用的是 8张 910B2 的显卡&#xff1a; 其中 MindSpore Transformers 的环境依赖如下&#xff1a; PythonMindSporeCANN固件与驱动3.1…

DeepSeek R1完全本地部署实战教程01-课程大纲

一、课程体系 二、学习目标: 了解基础知识掌握安装部署学会搭建可视化界面能力水平进阶三、课程特点: 案例驱动工程实战完整体系四、课程大纲 1.DeepSeek R1 项目运行演示 【视频课程】 (1)可视化交互 (2)联网搜索 (3)本地知识库 2.环境安装部署 【视频课程】 (1)软…

redis cluster测试

集群节点信息这时候停掉一个master 172.30.60.31 从集群信息集中我们可以看到172.30.60.31的slave是172.30.60.41&#xff0c;查看41的日志&#xff0c;发现他成为了新的master 这时候我们在将172.30.60.41也杀死&#xff0c;会发现集群异常了 尝试把172.30.60.31启动&#xff…

数据恢复-01-机械硬盘的物理与逻辑结构

磁盘存储原理 磁盘存储数据的原理&#xff1a; 磁盘存储数据的原理是利用磁性材料在磁场作用下的磁化性质&#xff0c;通过在磁盘表面上划分成许多小区域&#xff0c;根据不同的磁化方向来表示0和1的二进制数据&#xff0c;通过读写磁头在磁盘上的移动&#xff0c;可以实现数据…

网络工程师 (35)以太网通道

一、概念与原理 以太网通道&#xff0c;也称为以太端口捆绑、端口聚集或以太链路聚集&#xff0c;是一种将多个物理以太网端口组合成一个逻辑通道的技术。这一技术使得多个端口能够并行工作&#xff0c;共同承担数据传输任务&#xff0c;从而提高了网络的传输能力和可靠性。 二…

USB2.03.0摄像头区分UVC相机在linux中的常用命令

这里是引用 一. USB2.0 & 3.0接口支持区分 1.1. 颜色判断 USB接口的颜色并不是判断版本的可靠标准&#xff0c;但根据行业常见规范分析如下&#xff1a; USB接口颜色与版本对照表&#xff1a; 接口颜色常见版本内部触点数量传输速度黑色USB2.04触点480 Mbps (60 MB/s)白…

【推理llm论文精度】DeepSeek-R1:强化学习驱动LLM推理能力飞跃

最近deepseek R1模型大火&#xff0c;正好复习一下他家的技惊四座的论文https://arxiv.org/pdf/2501.12948 近年来&#xff0c;大型语言模型&#xff08;LLM&#xff09;在推理能力上取得了显著进展&#xff0c;但如何进一步有效提升仍然是研究热点。DeepSeek-AI发布了 DeepS…

从零搭建SpringBoot3+Vue3前后端分离项目基座,中小项目可用

文章目录 1. 后端项目搭建 1.1 环境准备1.2 数据表准备1.3 SpringBoot3项目创建1.4 MySql环境整合&#xff0c;使用druid连接池1.5 整合mybatis-plus 1.5.1 引入mybatis-plus1.5.2 配置代码生成器1.5.3 配置分页插件 1.6 整合swagger3&#xff08;knife4j&#xff09; 1.6.1 整…

学习数据结构(9)栈和队列上

1.栈的概念 栈是一种特殊的线性表&#xff0c;只允许在固定的一端进行插入和删除元素操作。进行数据插入和删除操作 的一端称为栈顶&#xff0c;另一端称为栈底。栈中的数据元素遵守后进先出&#xff08;先进先出&#xff09;的原则 栈的插入操作叫做进栈/压栈/入栈&#xff…

【ESP32】ESP-IDF开发 | WiFi开发 | HTTP服务器

1. 简介 1.1 HTTP HTTP&#xff08;Hyper Text Transfer Protocol&#xff09;&#xff0c;全称超文本传输协议&#xff0c;用于从网络服务器传输超文本到本地浏览器的传送协议。它可以使浏览器更加高效&#xff0c;使网络传输减少。它不仅保证计算机正确快速地传输超文本文档…

滚动弹幕案例

滚动弹幕案例 一、需求 1.页面上漂浮字体大小不一、颜色不一&#xff0c;从左向右滚动的弹幕&#xff1b; 2.底部中间有一个发送功能&#xff0c;可以发送新的弹幕&#xff1b; 3.底部的发送部分可以向下收起和弹出。 二、html <div class"container"><…

腿足机器人之五- 粒子滤波

腿足机器人之五粒子滤波 直方图滤波粒子滤波 上一篇博客使用的是高斯分布结合贝叶斯准则来估计机器人状态&#xff0c;本篇是基于直方图和粒子滤波器这两种无参滤波器估计机器人状态。 直方图方法将状态空间分解成有限多个区域&#xff0c;并用直方图表示后验概率。直方图为每个…