AI 语言模型发展史:统计方法、RNN 与 Transformer 的技术演进

news2025/3/14 14:29:48

引言

自然语言处理(NLP)是 AI 领域的重要分支,而语言模型(Language Model, LM)是 NLP 的核心技术。语言模型经历了从 统计方法RNN(循环神经网络),再到 Transformer 的演进,每一步都在提升模型的表达能力和计算效率。

本文从技术角度详细分析三种方法的核心原理、优缺点,并探讨 Transformer 如何在 AI 大模型(如 GPT-4)中发挥关键作用。


1. 统计方法(N-gram)

1.1 方法原理

统计方法基于 马尔可夫假设(Markov Assumption),认为当前词的出现仅依赖于前面 n-1 个词,而不是整个句子历史。常见的 N-gram 语言模型如下:

  • Unigram(1-gram): 仅考虑每个词的单独概率 P(w)。
  • Bigram(2-gram): 仅考虑当前词的前一个词 P(w_t | w_{t-1})。
  • Trigram(3-gram): 仅考虑当前词的前两个词 P(w_t | w_{t-2}, w_{t-1})。

语言模型的计算方式如下:
[
P(W) = P(w_1, w_2, …, w_T) = \prod_{t=1}^{T} P(w_t | w_{t-n+1}, …, w_{t-1})
]

1.2 优缺点

优点

  • 计算简单,易于实现。
  • 适用于小型数据集,能快速计算概率。

缺点

  • 长距离依赖问题:N-gram 只能考虑有限的上下文,忽略远距离词的影响。
  • 数据稀疏性:高阶 N-gram 需要大量数据,罕见短语可能无统计数据。
  • 无法泛化:仅能处理训练数据中见过的词汇,对新词无能为力。

2. RNN(循环神经网络)

2.1 方法原理

RNN 通过隐藏状态 h_t 记忆过去的信息,解决了 N-gram 只能处理短上下文的问题。RNN 的核心计算公式如下:
[
h_t = f(W_h h_{t-1} + W_x x_t + b)
]
[
y_t = W_y h_t + b_y
]
其中:

  • ( h_t ) 是当前的隐藏状态,包含了过去的信息。
  • ( W_h, W_x, W_y ) 是权重矩阵,( b ) 是偏置项。
  • ( x_t ) 是输入,( y_t ) 是输出。

2.2 变体(LSTM & GRU)

(1) LSTM(长短时记忆网络)
LSTM 通过 遗忘门(Forget Gate)、输入门(Input Gate)、输出门(Output Gate) 控制信息流动,使其能够记住长期依赖信息:
[
f_t = \sigma(W_f [h_{t-1}, x_t] + b_f)
]
[
i_t = \sigma(W_i [h_{t-1}, x_t] + b_i)
]
[
o_t = \sigma(W_o [h_{t-1}, x_t] + b_o)
]
[
c_t = f_t \odot c_{t-1} + i_t \odot \tilde{c_t}
]
[
h_t = o_t \odot \tanh(c_t)
]
其中:

  • ( f_t, i_t, o_t ) 分别为遗忘门、输入门和输出门。
  • ( c_t ) 是细胞状态,存储长期信息。

(2) GRU(门控循环单元)
GRU 结构比 LSTM 更简单,合并了输入门和遗忘门:
[
z_t = \sigma(W_z [h_{t-1}, x_t])
]
[
r_t = \sigma(W_r [h_{t-1}, x_t])
]
[
\tilde{h_t} = \tanh(W_h [r_t \odot h_{t-1}, x_t])
]
[
h_t = (1 - z_t) \odot h_{t-1} + z_t \odot \tilde{h_t}
]

2.3 优缺点

优点

  • 能处理任意长度的序列,比 N-gram 适应更长的上下文。
  • LSTM/GRU 解决了普通 RNN 的梯度消失问题。

缺点

  • 训练速度慢,难以并行化(序列计算依赖前一步)。
  • 对长序列仍存在信息遗忘问题。

3. Transformer(自注意力机制)

3.1 方法原理

Transformer 彻底抛弃了 RNN,使用 自注意力机制(Self-Attention) 计算词与词之间的关系,并行处理整个句子。

(1) 自注意力机制

给定输入序列 ( X = [x_1, x_2, …, x_n] ),我们计算每个词的 查询(Q)键(K)值(V)
[
Q = XW_Q, \quad K = XW_K, \quad V = XW_V
]
计算注意力权重:
[
\text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right) V
]

(2) 多头注意力

多个注意力头(Multi-Head Attention)并行计算:
[
\text{MultiHead}(Q, K, V) = \text{Concat}(\text{head}_1, …, \text{head}_h) W_O
]

(3) 位置编码

由于 Transformer 没有 RNN 的时序结构,需要 位置编码(Positional Encoding) 引入位置信息:
[
PE_{(pos, 2i)} = \sin(pos / 10000^{2i/d})
]
[
PE_{(pos, 2i+1)} = \cos(pos / 10000^{2i/d})
]

3.2 优缺点

优点

  • 并行计算,提高训练速度。
  • 处理长序列时效果优于 RNN,没有梯度消失问题。

缺点

  • 计算量大,对硬件要求高。
  • 长文本处理成本较高(注意力计算复杂度为 ( O(n^2) ))。

总结

方法核心原理优点缺点
N-gram统计词频概率计算简单不能处理长距离依赖
RNN记住前面信息逐步预测适合短文本训练慢,长句信息遗忘
Transformer关注整个句子,注意力机制并行计算,高效处理长文本计算量大,训练成本高

目前,Transformer 是大模型(如 GPT-4、BERT)的核心技术,未来 NLP 发展仍围绕自注意力机制展开。


📌 如果你想深入学习,可以研究 Transformer 细节,如多头注意力、Feedforward 层等。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2299578.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

新版电脑通过wepe安装系统

官方下载链接 WIN10下载 WIN11下载 微PE 启动盘制作 1:选择启动盘的设备 2:选择对应的U盘设备,点击安装就可以,建议大于8g 3:在上方链接下载需要安装的程序包,放入启动盘,按需 更新系统 …

Jmeter断言、关联、录制脚本

Jmeter断言 断言:让程序自动判断预期结果和实际结果是否一致 提示: Jmeter在请求的返回层面有个自动判断机制(响应状态码 2xx:成功,4xx/5xx:失败)但是请求成功了,并不代表结果一定正确,因此需要检测机制提…

SpringBoot速成(12)文章分类P15-P20

1.新增文章分类 1.Postman登录不上,可以从头registe->login一个新的成员:注意,跳转多个url时,post/get/patch记得修改成controller类中对应方法上写的 2.postman运行成功: 但表中不更新:细节有问题: c是…

RedHat8安装postgresql15和 postgis3.4.4记录及遇到的问题总结

安装包对照版本参考 UsersWikiPostgreSQLPostGIS – PostGIS 如果Red Hat系统上有旧版本的PostgreSQL需要卸载 在较新的Red Hat版本,使用dnf包管理器卸载:sudo dnf remove postgresql-server postgresql 旧版本,使用yum包管理器卸载 sudo y…

深入解析计算机网络请求头:常见类型与安全性影响

目录 1. Host 2. User-Agent 3. Cookie 4. Referer(或 Referrer) 5. Authorization 6. Content-Type 7. Content-Length 8. Origin 9. X-Forwarded-For (XFF) 10. Upgrade-Insecure-Requests 11. X-Frame-Options 12. Cache-Control 13. Ac…

VisoMaster整合包及汉化

VisoMaster是个图片及视频换脸工具,速度快,性能十分强大。 VisoMaster安装有2种方式,根据官网指引安装也十分简单,在此就不重复,只说说安装过程中要注意的事项: 1、自动安装:需要在网络十分畅…

从安装软件到flask框架搭建可视化大屏(二)——创建一个flask页面,搭建可视化大屏,零基础也可以学会

附录:所有文件的完整代码 models.py # models/models.py from flask_sqlalchemy import SQLAlchemydb SQLAlchemy()class User(db.Model):__tablename__ user # 显式指定表名为 userid db.Column(db.Integer, primary_keyTrue)username db.Column(db.String(…

[JVM篇]垃圾回收器

垃圾回收器 Serial Seral Old PartNew CMS(Concurrent Mark Sweep) Parallel Scavenge Parallel Old G1 ZGC

DeepSeek专题:DeepSeek-V1核心知识点速览

AIGCmagic社区知识星球是国内首个以AIGC全栈技术与商业变现为主线的学习交流平台,涉及AI绘画、AI视频、大模型、AI多模态、数字人以及全行业AIGC赋能等100应用方向。星球内部包含海量学习资源、专业问答、前沿资讯、内推招聘、AI课程、AIGC模型、AIGC数据集和源码等…

SpringBoot+shardingsphere实现按月分表功能

SpringBootshardingsphere实现按月分表功能 文章目录 前言 ShardingSphere 是一套开源的分布式数据库中间件解决方案,旨在简化数据库分片、读写分离、分布式事务等复杂场景的管理。它由 Apache 软件基金会支持,广泛应用于需要处理大规模数据的系统中 一…

教程 | 从零部署到业务融合:DeepSeek R1 私有化部署实战指南

文章目录 1. 什么是 DeepSeek R1?a. 主要介绍a. 版本区别 2. 部署资源要求a. 硬件资源要求 3. 本地安装DeepSeek-R1a. 为什么选择本地部署?b. 部署工具对比c. 演示环境配置d. Ollama安装流程 4. 可视化工具a. 工具对比b. Open-WebUI部署 5. AI API应用a.…

分布式 NewSQL 数据库(TiDB)

TiDB 是一个分布式 NewSQL 数据库。它支持水平弹性扩展、ACID 事务、标准 SQL、MySQL 语法和 MySQL 协议,具有数据强一致的高可用特性,是一个不仅适合 OLTP 场景还适合 OLAP 场景的混合数据库。 TiDB是 PingCAP公司自主设计、研发的开源分布式关系型数据…

C语言-章节 1:变量与数据类型 ——「未初始化的诅咒」

在那神秘且广袤无垠的「比特大陆」上,阳光奋力地穿过「内存森林」中错综复杂的代码枝叶缝隙,洒下一片片斑驳陆离、如梦似幻的光影。林间的空气里,弥漫着一股浓郁的十六进制锈蚀味,仿佛在诉说着这片森林中隐藏的古老秘密。 一位零基…

HTML的入门

一、HTML HTML(HyperText Markup Language,超文本标记语言)是一种用来告知浏览器如何组织页面的标记语言。 超文本:就是超越了文本;HTML不仅仅可以用来显示文本(字符串、数字之类),还可以显示视频、音频等…

闭源大语言模型的怎么增强:提示工程 检索增强生成 智能体

闭源大语言模型的怎么增强 提示工程 检索增强生成 智能体 核心原理 提示工程:通过设计和优化提示词,引导大语言模型进行上下文学习和分解式思考,激发模型自身的思维和推理能力,使模型更好地理解和生成文本,增强其泛用性和解决问题的能力。检索增强生成:结合检索的准确…

【图像加密解密】空间混沌序列的图像加密解密算法复现(含相关性检验)【Matlab完整源码 2期】

1、说明 本文给出详细完整代码、完整的实验报告和PPT。 环境:MATLAB2019a 复现文献:[1]孙福艳,吕宗旺.Digital image encryption with chaotic map lattices[J].Chinese Physics B,2011,20(04):136-142. 2、部分报告内容 3 部分源码与运行步骤 3.1 部…

QxOrm生成json

下载Qxorm-1.5版本 使用vs打开项目,直接生成即可: lib目录中会生成dll和lib文件 新建Qt项目使用Qxorm: 将QxOrm中上面三个目录拷贝到新建的Qt项目中 pro文件添加使用QxOrm第三方库 INCLUDEPATH $$PWD/include/ LIBS -L"$$PWD/lib" LIBS…

ASP.NET Core Web应用(.NET9.0)读取数据库表记录并显示到页面

1.创建ASP.NET Core Web应用 选择.NET9.0框架 安装SqlClient依赖包 2.实现数据库记录读取: 引用数据库操作类命名空间 创建查询记录结构类 查询数据并返回数据集合 3.前端遍历数据并动态生成表格显示 生成结果:

uniapp商城之首页模块

文章目录 前言一、自定义导航栏1.静态结构2.修改页面配置3.组件安全区适配二、通用轮播组件1. 静态结构组件2.自动导入全局组件3.首页轮播图数据获取三、首页分类1.静态结构2.首页获取分类数据并渲染四、热门推荐1.静态结构2.首页获取推荐数据并渲染3.首页跳转详细推荐页五、猜…

以若依移动端版为基础,实现uniapp的flowable流程管理

1.前言 此代码是若依移动端版为基础,实现flowable流程管理,支持H5、APP和微信小程序三端。其中,APP是在安卓在雷电模拟器环境下完成的,其他环境未测试,此文章中所提及的APP均指上述环境。移动端是需要配合若依前后端分…