强化学习之 PPO 算法:原理、实现与案例深度剖析

news2025/2/11 15:39:23

目录

    • 一、引言
    • 二、PPO 算法原理
      • 2.1 策略梯度
      • 2.2 PPO 核心思想
    • 三、PPO 算法公式推导
      • 3.1 重要性采样
      • 3.2 优势函数估计
    • 四、PPO 算法代码实现(以 Python 和 PyTorch 为例)
    • 五、PPO 算法案例应用
      • 5.1 机器人控制
      • 5.2 自动驾驶
    • 六、总结


一、引言

强化学习作为机器学习中的一个重要领域,旨在让智能体通过与环境交互,学习到最优的行为策略以最大化长期累积奖励。近端策略优化(Proximal Policy Optimization,PPO)算法是强化学习中的明星算法,它在诸多领域都取得了令人瞩目的成果。本文将深入探讨 PPO 算法,从原理到代码实现,再到实际案例应用,力求让读者全面掌握这一强大的算法。

二、PPO 算法原理

2.1 策略梯度

在强化学习里,策略梯度是一类关键的优化方法,你可以把它想象成是智能体在学习如何行动时的 “指南针”。假设策略由参数 θ \theta θ 表示,这就好比是智能体的 “行动指南” 参数,智能体在状态 s s s 下采取行动 a a a 的概率为 π θ ( a ∣ s ) \pi_{\theta}(a|s) πθ(as) ,即根据当前的 “行动指南”,在这个状态下选择这个行动的可能性。

策略梯度的目标是最大化累计奖励的期望,用公式表示就是: J ( θ ) = E s 0 , a 0 , ⋯ [ ∑ t = 0 T γ t r ( s t , a t ) ] J(\theta)=\mathbb{E}_{s_0,a_0,\cdots}\left[\sum_{t = 0}^{T}\gamma^{t}r(s_t,a_t)\right] J(θ)=Es0,a0,[t=0Tγtr(st,at)]

这里的 γ \gamma γ 是折扣因子,它的作用是让智能体更关注近期的奖励,因为越往后的奖励可能越不确定,就像我们在做决策时,往往会更看重眼前比较确定的好处。 r ( s t , a t ) r(s_t,a_t) r(st,at) 是在状态 s t s_t st 下采取行动 a t a_t at 获得的奖励,比如玩游戏时,在某个游戏场景下做出某个操作得到的分数。

根据策略梯度定理,策略梯度可以表示为: ∇ θ J ( θ ) = E s , a [ ∇ θ log ⁡ π θ ( a ∣ s ) A ( s , a ) ] \nabla_{\theta}J(\theta)=\mathbb{E}_{s,a}\left[\nabla_{\theta}\log\pi_{\theta}(a|s)A(s,a)\right] θJ(θ)=Es,a[θlogπθ(as)A(s,a)]

这里的 A ( s , a ) A(s,a) A(s,a) 是优势函数,它表示采取行动 a a a 相对于平均策略的优势。简单来说,就是判断这个行动比一般的行动好在哪里,好多少,帮助智能体决定是否要多采取这个行动。

2.2 PPO 核心思想

PPO 算法的核心是在策略更新时,限制策略的变化幅度,避免更新过大导致策略性能急剧下降。这就好像我们在调整自行车的变速器,如果一下子调得太猛,可能车子就没法正常骑了。

它通过引入一个截断的目标函数来实现这一点: L C L I P ( θ ) = E t [ min ⁡ ( r t ( θ ) A ^ t , clip ( r t ( θ ) , 1 − ϵ , 1 + ϵ ) A ^ t ) ] L^{CLIP}(\theta)=\mathbb{E}_{t}\left[\min\left(r_t(\theta)\hat{A}_t, \text{clip}(r_t(\theta), 1 - \epsilon, 1+\epsilon)\hat{A}_t\right)\right] LCLIP(θ)=Et[min(rt(θ)A^t,clip(rt(θ),1ϵ,1+ϵ)A^t)]

其中 r t ( θ ) = π θ ( a t ∣ s t ) π θ o l d ( a t ∣ s t ) r_t(\theta)=\frac{\pi_{\theta}(a_t|s_t)}{\pi_{\theta_{old}}(a_t|s_t)} rt(θ)=πθold(atst)πθ(atst) 是重要性采样比,它反映了新策略和旧策略对于同一个状态 - 行动对的概率差异。 A ^ t \hat{A}_t A^t 是估计的优势函数, ϵ \epsilon ϵ 是截断参数,通常设置为一个较小的值,如 0.2 。这个截断参数就像是给策略更新幅度设定了一个 “安全范围”,在这个范围内更新策略,能保证策略既有所改进,又不会变得太糟糕。

三、PPO 算法公式推导

3.1 重要性采样

重要性采样是 PPO 算法中的关键技术之一。由于直接从当前策略采样数据效率较低,我们可以从旧策略 π θ o l d \pi_{\theta_{old}} πθold 采样数据,然后通过重要性采样比 r t ( θ ) r_t(\theta) rt(θ) 来校正数据的分布。 E s ∼ π θ [ f ( s ) ] ≈ 1 N ∑ i = 1 N π θ ( s i ) π θ o l d ( s i ) f ( s i ) \mathbb{E}_{s\sim\pi_{\theta}}[f(s)]\approx\frac{1}{N}\sum_{i = 1}^{N}\frac{\pi_{\theta}(s_i)}{\pi_{\theta_{old}}(s_i)}f(s_i) Esπθ[f(s)]N1i=1Nπθold(si)πθ(si)f(si)

比如我们要了解一群鸟的飞行习惯,直接去观察所有鸟的飞行轨迹很困难,那我们可以先观察一部分容易观察到的鸟(旧策略采样),然后根据这些鸟和所有鸟的一些特征差异(重要性采样比),来推测整个鸟群的飞行习惯。

3.2 优势函数估计

优势函数 A ( s , a ) A(s,a) A(s,a) 可以通过多种方法估计,常用的是广义优势估计(Generalized Advantage Estimation,GAE): A ^ t = ∑ k = 0 ∞ ( γ λ ) k δ t + k \hat{A}_t=\sum_{k = 0}^{\infty}(\gamma\lambda)^k\delta_{t + k} A^t=k=0(γλ)kδt+k

其中 δ t = r t + γ V ( s t + 1 ) − V ( s t ) \delta_{t}=r_t+\gamma V(s_{t + 1})-V(s_t) δt=rt+γV(st+1)V(st) 是 TD 误差, λ \lambda λ 是 GAE 参数,通常在 0 到 1 之间。优势函数的估计就像是给智能体的行动打分,告诉它每个行动到底有多好,以便它做出更好的决策。

四、PPO 算法代码实现(以 Python 和 PyTorch 为例)

import torch

import torch.nn as nn

import torch.optim as optim

import gym

class Policy(nn.Module):

def __init__(self, state_dim, action_dim):

    super(Policy, self).__init__()

    self.fc1 = nn.Linear(state_dim, 64)

    self.fc2 = nn.Linear(64, 64)

    self.mu_head = nn.Linear(64, action_dim)

    self.log_std_head = nn.Linear(64, action_dim)

def forward(self, x):

    x = torch.relu(self.fc1(x))

    x = torch.relu(self.fc2(x))

    mu = torch.tanh(self.mu_head(x))

    log_std = self.log_std_head(x)

    std = torch.exp(log_std)

    dist = torch.distributions.Normal(mu, std)

    return dist

class Value(nn.Module):

def __init__(self, state_dim):

    super(Value, self).__init__()

    self.fc1 = nn.Linear(state_dim, 64)

    self.fc2 = nn.Linear(64, 64)

    self.v_head = nn.Linear(64, 1)

def forward(self, x):

    x = torch.relu(self.fc1(x))

    x = torch.relu(self.fc2(x))

    v = self.v_head(x)

    return v

def ppo_update(policy, value, optimizer_policy, optimizer_value, states, actions, rewards, dones, gamma=0.99,

           clip_epsilon=0.2, lambda_gae=0.95):

states = torch.FloatTensor(states)

actions = torch.FloatTensor(actions)

rewards = torch.FloatTensor(rewards)

dones = torch.FloatTensor(dones)

values = value(states).squeeze(1)

returns = []

gae = 0

for i in reversed(range(len(rewards))):

    if i == len(rewards) - 1:

        next_value = 0

    else:

        next_value = values[i + 1]

    delta = rewards[i] + gamma * next_value * (1 - dones[i]) - values[i]

    gae = delta + gamma * lambda_gae * (1 - dones[i]) * gae

    returns.insert(0, gae + values[i])

returns = torch.FloatTensor(returns)

old_dist = policy(states)

old_log_probs = old_dist.log_prob(actions).sum(-1)

for _ in range(3):

    dist = policy(states)

    log_probs = dist.log_prob(actions).sum(-1)

    ratios = torch.exp(log_probs - old_log_probs)

    advantages = returns - values.detach()

    surr1 = ratios * advantages

    surr2 = torch.clamp(ratios, 1 - clip_epsilon, 1 + clip_epsilon) * advantages

    policy_loss = -torch.min(surr1, surr2).mean()

    optimizer_policy.zero_grad()

    policy_loss.backward()

    optimizer_policy.step()

    value_loss = nn.MSELoss()(value(states).squeeze(1), returns)

    optimizer_value.zero_grad()

    value_loss.backward()

    optimizer_value.step()

def train_ppo(env_name, num_episodes=1000):

env = gym.make(env_name)

state_dim = env.observation_space.shape[0]

action_dim = env.action_space.shape[0]

policy = Policy(state_dim, action_dim)

value = Value(state_dim)

optimizer_policy = optim.Adam(policy.parameters(), lr=3e-4)

optimizer_value = optim.Adam(value.parameters(), lr=3e-4)

for episode in range(num_episodes):

    states, actions, rewards, dones = [], [], [], []

    state = env.reset()

    done = False

    while not done:

        state = torch.FloatTensor(state)

        dist = policy(state)

        action = dist.sample()

        next_state, reward, done, _ = env.step(action.detach().numpy())

        states.append(state)

        actions.append(action)

        rewards.append(reward)

        dones.append(done)

        state = next_state

    ppo_update(policy, value, optimizer_policy, optimizer_value, states, actions, rewards, dones)

    if episode % 100 == 0:

        total_reward = 0

        state = env.reset()

        done = False

        while not done:

            state = torch.FloatTensor(state)

            dist = policy(state)

            action = dist.mean

            next_state, reward, done, _ = env.step(action.detach().numpy())

            total_reward += reward

            state = next_state

        print(f"Episode {episode}, Average Reward: {total_reward}")

if __name__ == "__main__":

train_ppo('Pendulum-v1')

五、PPO 算法案例应用

5.1 机器人控制

在机器人控制领域,PPO 算法可以用于训练机器人的运动策略。例如,训练一个双足机器人行走,机器人的状态可以包括关节角度、速度等信息,行动则是关节的控制指令。通过 PPO 算法,机器人可以学习到如何根据当前状态调整关节控制,以实现稳定高效的行走。

5.2 自动驾驶

在自动驾驶场景中,车辆的状态包括位置、速度、周围环境感知信息等,行动可以是加速、减速、转向等操作。PPO 算法可以让自动驾驶系统学习到在不同路况和环境下的最优驾驶策略,提高行驶的安全性和效率。

六、总结

PPO 算法作为强化学习中的优秀算法,以其高效的学习能力和良好的稳定性在多个领域得到了广泛应用。通过深入理解其原理、公式推导,结合代码实现和实际案例分析,我们能够更好地掌握和运用这一算法,为解决各种复杂的实际问题提供有力的工具。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2296390.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Kotlin协程详解——协程上下文

目录 一、上下文结构 get()获取元素 minusKey()删除元素 fold()元素遍历 plus()添加元素 CombinedContext Key 二、协程名称CoroutineName 三、上下文组合 四、协程作用域CoroutineScope 五、典型用例 协程的上下文,它包含用户定义的一些数据集合&#x…

手写一个C++ Android Binder服务及源码分析

手写一个C Android Binder服务及源码分析 前言一、 基于C语言编写Android Binder跨进程通信Demo总结及改进二、C语言编写自己的Binder服务Demo1. binder服务demo功能介绍2. binder服务demo代码结构图3. binder服务demo代码实现3.1 IHelloService.h代码实现3.2 BnHelloService.c…

Deep Dive into LLMs like ChatGPT - by Andrej Karpathy

https://www.youtube.com/watch?v7xTGNNLPyMIhttps://www.youtube.com/watch?v7xTGNNLPyMIDeep Dive into LLMs like ChatGPT - by Andrej Karpathy_哔哩哔哩_bilibilihttps://www.youtube.com/watch?v7xTGNNLPyMI转载自Andrej Karpathy Youtube ChannelThis is a general a…

react实例与总结(一)

目录 一、简单认识 1.1、特点 1.2、JSX语法规则 1.3、函数组件和类式组件 1.4、类组件三大属性state、props、refs 1.4.1、state 1.4.2、props 1.4.3、refs 1.5、事件处理 1.6、收集表单数据—非受控组件和受控组件 1.7、高阶函数—函数柯里化 1.8、生命周期—新旧…

51单片机(国信长天)矩阵键盘的基本操作

在CT107D单片机综合训练平台上,首先将J5处的跳帽接到1~2引脚,使按键S4~S19按键组成4X4的矩阵键盘。在扫描按键的过程中,发现有按键触发信号后(不做去抖动),待按键松开后,在数码管的第一位显示相应的数字:从左至右&…

STM32 RTC亚秒

rtc时钟功能实现:rtc模块在stm32内部,由电池或者主电源供电。如下图,需注意实现时仅需设置一次初始化。 1、stm32cubemx 代码生成界面设置,仅需开启时钟源和激活日历功能。 2、生成的代码,需要对时钟进行初始化,仅需…

【Linux】深入理解linux权限

🌟🌟作者主页:ephemerals__ 🌟🌟所属专栏:Linux 目录 前言 一、权限是什么 二、用户和身份角色 三、文件属性 1. 文件属性表示 2. 文件类型 3. 文件的权限属性 四、修改文件的权限属性和角色 1. …

json格式,curl命令,及轻量化处理工具

一. JSON格式 JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式。它基于一个子集的JavaScript编程语言,使用人类易于阅读的文本格式来存储和表示数据。尽管名字中有“JavaScript”,但JSON是语言无关的,几…

web直播弹幕抓取分析 signature

声明: 本文章中所有内容仅供学习交流使用,不用于其他任何目的,抓包内容、敏感网址、数据接口等均已做脱敏处理,严禁用于商业用途和非法用途,否则由此产生的一切后果均与作者无关! 前言 最近遇到太多难点了卡了很久&am…

ABP框架9——自定义拦截器的实现与使用

一、AOP编程 AOP定义:面向切片编程,着重强调功能,将功能从业务逻辑分离出来。AOP使用场景:处理通用的、与业务逻辑无关的功能(如日志记录、性能监控、事务管理等)拦截器:拦截方法调用并添加额外的行为,比如…

CUDA 计算平台 CUDA 兼容性【笔记】

在 b 站看过的两个关于 CUDA 的技术分享,整理分享下对自己有用的课件。 20231130 2023第9期 聊一聊常见的AI计算平台库_哔哩哔哩_bilibili20230831 2023第6期 聊一聊CUDA兼容性_哔哩哔哩_bilibili 文章目录 CUDA 计算平台CUDA 函数库介绍英伟达三大护城河&#xff1…

最新消息 | 德思特荣获中国创新创业大赛暨广州科技创新创业大赛三等奖!

2024年12月30日,广州市科技局公开第十三届中国创新创业大赛(广东广州赛区)暨2024年广州科技创新创业大赛决赛成绩及拟获奖企业名单,德思特获得了智能与新能源汽车初创组【第六名】【三等奖】的好成绩! 关于德思特&…

ubuntu安装VMware报错/dev/vmmon加载失败

ubuntu安装VMware报错/dev/vmmon加载失败,解决步骤如下: step1:为vmmon和vmnet组件生成密钥对 openssl req -new -x509 -newkey rsa:2048 -keyout VMW.priv -outform DER -out VMW.der -nodes -days 36500 -subj "/CNVMware/"ste…

python的列表、元组、深拷贝、浅拷贝(四)

python的列表 一、序列1. 序列定义2. 序列数据类型包括3.特点:都支持下面的特性 二、 列表1. 列表的创建2. 列表的基本特性(1) 连接操作符喝重复操作符(2) 成员操作符(in , not in )(3) 索引(4) 切片练习(5) for循环 3. 列表的常用方法(1) 一…

2.10作业

思维导图 C C语言

【深度学习】多目标融合算法(四):多门混合专家网络MMOE(Multi-gate Mixture-of-Experts)

目录 一、引言 二、MMoE(Multi-gate Mixture-of-Experts,多门混合专家网络) 2.1 技术原理 2.2 技术优缺点 2.3 业务代码实践 2.3.1 业务场景与建模 2.3.2 模型代码实现 2.3.3 模型训练与推理测试 2.3.4 打印模型结构 三、总结 一、…

RuoYi-Vue-Oracle的oracle driver驱动配置问题ojdbc8-12.2.0.1.jar的解决

RuoYi-Vue-Oracle的oracle driver驱动配置问题ojdbc8-12.2.0.1.jar的解决 1、报错情况 下载:https://gitcode.com/yangzongzhuan/RuoYi-Vue-Oracle 用idea打开,启动: 日志有报错: 点右侧m图标,maven有以下报误 &…

C# OpenCV机器视觉:对位贴合

在热闹非凡的手机维修街上,阿强开了一家小小的手机贴膜店。每天看着顾客们自己贴膜贴得歪歪扭扭,不是膜的边缘贴不整齐,就是里面充满了气泡,阿强心里就想:“要是我能有个自动贴膜的神器,那该多好啊&#xf…

Baumer工业相机堡盟相机的相机传感器芯片清洁指南

Baumer工业相机堡盟相机的相机传感器芯片清洁指南 Baumer工业相机1.Baumer工业相机传感器芯片清洁工具和清洁剂2.Baumer工业相机传感器芯片清洁步骤2.1、准备步骤2.2、清洁过程1.定位清洁工具2.清洁传感器3.使用吹风装置 Baumer工业相机传感器芯片清洁的优势设计与结…

《我在技术交流群算命》(三):QML的Button为什么有个蓝框去不掉啊(QtQuick.Controls由Qt5升级到Qt6的异常)

有群友抛出类似以下代码和运行效果截图: import QtQuick import QtQuick.ControlsWindow {width: 640height: 480visible: truetitle: qsTr("Hello World")Button{anchors.centerIn: parentwidth: 100height: 40background: Rectangle {color: "red…