哪吒闹海!SCI算法+分解组合+四模型原创对比首发!SGMD-FATA-Transformer-LSTM多变量时序预测

news2025/3/20 3:51:27

哪吒闹海!SCI算法+分解组合+四模型原创对比首发!SGMD-FATA-Transformer-LSTM多变量时序预测

目录

    • 哪吒闹海!SCI算法+分解组合+四模型原创对比首发!SGMD-FATA-Transformer-LSTM多变量时序预测
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述

在这里插入图片描述

基本介绍

1.SCI算法海市蜃楼优化算法优化算法+分解组合对比!SGMD-FATA-Transformer-LSTM多变量时间序列光伏功率预测,辛几何模态分解+海市蜃楼优化算法优化Transformer结合长短期记忆神经网络多变量时间序列预测(程序可以作为核心级论文代码支撑,目前尚未发表);
海市蜃楼优化算法(Fata morgana algorithm, FATA)是一种新型的元启发式算法(智能优化算法),灵感来源于海市蜃楼的形成过程,该成果由Ailiang Qi于2024年8月发表在SCI的Top期刊《Neurocomputing》上!
2.算法优化参数为:学习率,隐含层单元数目,最大训练周期,运行环境为Matlab2023b及以上;
3.数据集为excel(光伏功率数据集,输入辐射度、气温、气压、湿度,输出光伏功率),输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测,主程序运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MSE、RMSE、MAE、MAPE、MBE等多指标评价。
先运行main1SGMD,进行SGMD分解;再运行main2FATATransformerLSTM,四个模型对比;注意:一种算法不是万能的,不同的数据集效果会有差别,后面的工作就是需要调整参数。

数据集
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

参考文献
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

程序设计

  • 完整程序和数据获取方式私信博主回复哪吒闹海!SCI算法+分解组合+四模型原创对比首发!SGMD-FATA-Transformer-LSTM多变量时序预测(Matlab)




%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

clc;
clear 
close all
warning off
%% CSDN《机器学习之心》
%% Transformer预测
tic
X = xlsread('北半球光伏数据.xlsx');
load SGMD_data.mat


disp('…………………………………………………………………………………………………………………………')

num_samples = length(X);       % 样本个数 
kim = 5;                       % 延时步长(kim个历史数据作为自变量)
zim =  1;                      % 跨zim个时间点进行预测
or_dim = size(X,2);

%  重构数据集
for i = 1: num_samples - kim - zim + 1
    res(i, :) = [reshape(X(i: i + kim - 1,:), 1, kim*or_dim), X(i + kim + zim - 1,:)];
end


% 训练集和测试集划分
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度


P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%%  数据平铺
%   将数据平铺成1维数据只是一种处理方式
%   也可以平铺成2维数据,以及3维数据,需要修改对应模型结构
%   但是应该始终和输入层数据结构保持一致
P_train =  double(reshape(P_train, f_, 1, 1, M));
P_test  =  double(reshape(P_test , f_, 1, 1, N));

t_train = t_train';
t_test  = t_test' ;

%%  数据格式转换%% CSDN《机 器 学 习 之 心》
for i = 1 : M
    p_train{i, 1} = P_train(:, :, 1, i);
end

for i = 1 : N
    p_test{i, 1}  = P_test( :, :, 1, i);
end

% Transformer建模
numChannels = f_;                                             % 定义输入的通道数,变量 f_ 代表特征的维度
maxPosition = 256*2;                                          % 最大位置编码,通常用于序列长度的上限,这里设为 512
numHeads = 4;                                                 % 自注意力机制中的头数
numKeyChannels = numHeads*32;                                 % 每个头的键通道数,总键通道数为 128








参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/127931217
[2] https://blog.csdn.net/kjm13182345320/article/details/127418340

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2296289.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Django开发入门 – 3.用Django创建一个Web项目

Django开发入门 – 3.用Django创建一个Web项目 Build A Web Based Project With Django By JacksonML 本文简要介绍如何利用最新版Python 3.13.2来搭建Django环境,以及创建第一个Django Web应用项目,并能够运行Django Web服务器。 创建该Django项目需…

2025.2.8——二、Confusion1 SSTI模板注入|Jinja2模板

题目来源:攻防世界 Confusion1 目录 一、打开靶机,整理信息 二、解题思路 step 1:查看网页源码信息 step 2:模板注入 step 3:构造payload,验证漏洞 step 4:已确认为SSTI漏洞中的Jinjia2…

【C语言标准库函数】标准输入输出函数详解[5]:格式化文件输入输出

目录 一、fprintf() 函数 1.1. 函数简介 1.2. fprintf使用场景 1.3. 注意事项 1.4. 示例 二、fscanf() 函数 2.1. 函数简介 2.2. fscanf使用场景 2.3. 注意事项 2.3. 示例 三、总结 在 C 语言中,格式化文件输入输出函数能够让我们以特定的格式对文件进行…

【详细版】DETR系列之Deformable DETR(2021 ICLR)

论文标题Deformable DETR: Deformable Transformers for End-to-End Object Detection论文作者Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai发表日期2021年03月01日GB引用> Xizhou Zhu, Weijie Su, Lewei Lu, et al. Deformable DETR: Deformable T…

c++----函数重载

目录标题 为什么会有函数重载函数重载的概念函数重载的例子第一个:参数的类型不同第二个:参数的个数不同第三种:类型的顺序不同函数重载的奇异性重载函数的底层原理有关函数重载的一个问题 为什么会有函数重载 大家在学c语言的时候有没有发现…

从云原生到 AI 原生,谈谈我经历的网关发展历程和趋势

作者:谢吉宝(唐三) 编者按: 云原生 API 网关系列教程即将推出,欢迎文末查看教程内容。本文整理自阿里云智能集团资深技术专家,云原生产品线中间件负责人谢吉宝(唐三) 在云栖大会的精…

多头自注意力中的多头作用及相关思考

文章目录 1. num_heads2. pytorch源码演算 1. num_heads 将矩阵的最后一维度进行按照num_heads的方式进行切割矩阵,具体表示如下: 2. pytorch源码演算 pytorch 代码 import torch import torch.nn as nn import torch.nn.functional as Ftorch.set…

常用的python库-安装与使用

常用的python库函数 yield关键字openslide库openslide库的安装-linuxopenslide的使用openslide对象的常用属性 cv2库numpy库ASAP库-multiresolutionimageinterface库ASAP库的安装ASAP库的使用 concurrent.futures.ThreadPoolExecutorxml.etree.ElementTree库skimage库PIL.Image…

对接DeepSeek

其实,整个对接过程很简单,就四步,获取key,找到接口文档,接口测试,代码对接。 获取 KEY https://platform.deepseek.com/transactions 直接付款就是了(现在官网暂停充值2025年2月7日&#xff0…

ChatGPT提问技巧:行业热门应用提示词案例-文案写作

ChatGPT 作为强大的 AI 语言模型,已经成为文案写作的得力助手。但要让它写出真正符合你需求的文案,关键在于如何与它“沟通”,也就是如何设计提示词(Prompt)。以下是一些实用的提示词案例,帮助你解锁 ChatG…

分享如何通过Mq、Redis、XxlJob实现算法任务的异步解耦调度

一、背景 1.1 产品简介 基于大模型塔斯,整合传统的多项能力(NLP、OCR、CV等),构建以场景为中心的新型智能文档平台。通过文档审阅,实现结构化、半结构化和非结构化文档的信息获取、处理及审核,同时基于大…

8.flask+websocket

http是短连接,无状态的。 websocket是长连接,有状态的。 flask中使用websocket from flask import Flask, request import asyncio import json import time import websockets from threading import Thread from urllib.parse import urlparse, pars…

【大模型实战】使用Ollama+Chatbox实现本地Deepseek R1模型搭建

下载安装Ollama Ollama官方链接:https://ollama.com/,打开链接后就可以看到大大的下载按钮,如下图: 我选择用Win的安装。将Ollama的安装包下载到本地,如果下载慢可以复制链接到迅雷里面,提高下载速度,如下图: 双击之后,就可以开始安装了,如下图: 默认安装到C盘,…

VMware 虚拟机 ubuntu 20.04 扩容工作硬盘

一、关闭虚拟机 关闭虚拟机参考下图,在vmware 调整磁盘容量 二、借助工具fdisk testubuntu ~ $ df -h Filesystem Size Used Avail Use% Mounted on udev 1.9G 0 1.9G 0% /dev tmpfs 388M 3.1M 385M 1% /run /dev/sda5 …

【漫话机器学习系列】082.岭回归(或脊回归)中的α值(alpha in ridge regression)

岭回归(Ridge Regression)中的 α 值 岭回归(Ridge Regression)是一种 带有 L2​ 正则化 的线性回归方法,用于处理多重共线性(Multicollinearity)问题,提高模型的泛化能力。其中&am…

9 Pydantic复杂数据结构的处理

在构建现代 Web 应用时,我们往往需要处理复杂的输入和输出数据结构。例如,响应数据可能包含嵌套字典、列表、元组,甚至是多个嵌套对象。Pydantic 是一个强大的数据验证和序列化库,可以帮助我们轻松地处理这些复杂的数据结构&#…

Day62_补20250210_图论part6_108冗余连接|109.冗余连接II

Day62_20250210_图论part6_108冗余连接|109.冗余连接II 108冗余连接 【把题意转化为并查集问题】 题目 有一个图,它是一棵树,他是拥有 n 个节点(节点编号1到n)和 n - 1 条边的连通无环无向图(其实就是一个线形图&am…

kafka消费端之消费者协调器和组协调器

文章目录 概述回顾历史老版本获取消费者变更老版本存在的问题 消费者协调器和组协调器新版如何解决老版本问题再均衡过程**第一阶段CFIND COORDINATOR****第二阶段(JOINGROUP)**选举消费组的lcader选举分区分配策略 第三阶段(SYNC GROUP&…

IDEA升级出现问题Failed to prepare an update Temp directory inside installation

IDEA升级出现问题"Failed to prepare an update Temp directory inside installation…" 问题来源: 之前修改了IDEA的默认配置文件路径,然后升级新版本时就无法升级,提示"Failed to prepare an update Temp directory insid…

十款开源的论坛建站工具

以下是十款开源的论坛建站工具,它们各具特色,能够满足不同用户的需求: Discuz!(Crossday Discuz! Board) 特点:基础架构采用web编程组合PHPMySQL,用户可以在不需要任何编程的基础上,…