【贪心算法篇】:“贪心”之旅--算法练习题中的智慧与策略(一)

news2025/2/5 21:11:02

✨感谢您阅读本篇文章,文章内容是个人学习笔记的整理,如果哪里有误的话还请您指正噢✨
✨ 个人主页:余辉zmh–CSDN博客
✨ 文章所属专栏:贪心算法篇–CSDN博客

在这里插入图片描述

文章目录

  • 一.贪心算法
    • 1.什么是贪心算法
    • 2.贪心算法的特点
  • 二.例题
    • 1.柠檬水找零
    • 2.将数组和减半的最小操作次数
    • 3.最大数
    • 4.摆动序列

一.贪心算法

1.什么是贪心算法

贪心算法(Greedy Algorithm)是一种在每一步选择中都采取在当前状态下的最优决策的算法策略。他并不从整体最优上加以考虑,而是做出在当前看来是最好的选择。

1.把解决问题的过程分为若干步骤。

2.解决每一步时都选取当前看起来最优的选择。

3.“希望”得到全局最优解。(注意是“希望”,可不一定就是最优解)

简单形容就是贪婪+鼠目寸光,因此叫做贪心算法。

下面介绍几个典型的示例:

在这里插入图片描述

2.贪心算法的特点

  • 贪心策略的提出
    • 贪心策略的提出是没有标准和模板的,可能每一道题的贪心策略都是不同的,因此在学习贪心算法的时候重点要掌握每一道题的策略,把这道题的策略当成经验。
  • 贪心策略的正确性
    • 前面提到一个词“希望”得到最优解,因为有可能“贪心策略是一个错误的方法,正确的贪心策略,是需要严格的数学证明。

二.例题

1.柠檬水找零

题目

在这里插入图片描述

在这里插入图片描述

算法原理

根据题意可以明白,顾客付钱有三种情况,如果是5美元,那就直接收下;如果是10美元,并且当前手里5美元的数量大于等于1,收下然后找零5美元,如果没有5美元,则返回false;如果是20美元,有两种找零方式,第一种:10+5;第二种:5+5+5;这里就用到了贪心的思想,优先使用第一种方式找零。如果第一次20美元使用第二种找零方式,恰好手里有三张5美元,一张10美元,如果第一次就使用三张5美元,等之后再次遇到10美元,就只剩一张10美元,不能找零。

这里用到的是交换论证法:如果20美元使用第二种找零方式,手里的10美元一直到最后也没有使用,因此10美元可以替换20美元找零时的两张5美元;如果第一次20美元使用第二种找零方式5+5+5,第二次使用第一种方式找零10+5,第二次的10可以和第一次的两张5交换,交换后无影响。

代码实现

bool lemonadeChange(vector<int>& bills){
    //设置两个变量一个用来表示5元的个数,一用来表示10元的个数
    int five = 0, ten = 0;

    for(auto x : bills){
        //如果给的是5元,直接收下
        if(x==5){
            five++;
        }
        //如果给的是10元,先判度是否有5元找零,有就找零收下,没有就返回
        if(x==10){
            if(five==0){
                return false;
            }
            else{
                five--;
                ten++;
            }
        }
        //如果给的是20元,有三种情况
        if(x==20){
            //贪心思想,优先考虑10+5找零
            if(ten&&five){
                five--;
                ten--;
            }
            //第一种不能找零,再考虑第二种找零方式5+5+5
            else if(five>=3){
                five -= 3;
            }
            //如果两种情况都不能找零,返回
            else{
                return false;
            }
        }
    }
    return true;
}

2.将数组和减半的最小操作次数

题目

在这里插入图片描述

在这里插入图片描述

算法原理

因此本道题的贪心策略:使用最少的操作次数完成数组和的减半,因此每次选择一个数减半时,都选择最大的那个数减半,这里就是贪心的思想,每次都选择最大的数减半。既然要快速获取数组中的最大数,就可以借助大根堆这个数据结构,每次都选择堆顶的元素减半,减半后从新放回堆中调整,然后循环进行,知道数组和减到一半,返回最小操作数。

代码实现

int halveArray(vector<int>& nums){
    //建立一个大根堆
    priority_queue<double> heap;

    //遍历数组求和并存放到堆中
    double sum = 0.0;
    for(int x : nums){
        heap.push(x);
        sum += x;
    }

    //先获取数组和的一半,每次减去堆顶元素的一半直到减为小于等于0
    sum /= 2.0;
    int count=0;
    while(sum>0){
        //获取堆顶元素的一半,并删去
        double t = heap.top() / 2.0;
        heap.pop();
        count++;
        sum -= t;
        heap.push(t);
    }

    return count;
}

3.最大数

题目

在这里插入图片描述

算法原理

根据题意要求,可以自定义排序规则,因为要返回的是组合后最大的数,所以按照自定义的排序规则从大到小的排序;比如现在有两个数,a和b,有两种组合方式ab和ba,如果组合后ab>ba,则a在前,b在后;如果ab=ba,则a=b;如果ab<ba,则b在前,a在后;比如示例一:a=10,b=2,组合后ab=102<ba=210,所以b(2)在前,a(10)在后,根据自定义排序规则将整个数组中的元素都排序后,然后从前往后组合就是要找的最大数。

这里有一个细节点,如何快速的将两个数组合比较?可以先将每一个数都转化成字符串的形式,组合时直接的将两个字符串相加拼接即可,这样就能快速的组合,最后排完序后,还可以直接从前往后将所有字符串拼接,就是要返回的结果。

至于为什么上面的这个自定义排序规则是正确的,可以看下面的证明过程:

在这里插入图片描述

代码实现

string largestNumber(vector<int>& nums){
    //先将每个数字转换成字符串,存放到字典数组中
    vector<string> dictionary;
    for(auto x : nums){
        dictionary.push_back(to_string(x));
    }

    //使用Lambda表达式自定义排序规则
    sort(dictionary.begin(), dictionary.end(), [&](const string& s1, const string& s2){
        return s1 + s2 > s2 + s1; 
    });

    string ret;
    for(auto s : dictionary){
        ret += s;
    }

    if(ret[0]=='0'){
        return "0";
    }
    return ret;
}

4.摆动序列

题目

在这里插入图片描述

在这里插入图片描述

算法原理

在这里插入图片描述

代码实现

//全局变量表示左侧的峰值
int left = 0;
int wiggleMaxLength(vector<int>& nums){
    //寻找波峰和波谷
    int ret = 0;

    for (int i = 0; i < nums.size(); i++){
        //如果是最后一个位置,直接+1
        if(i==nums.size()-1){
            ret++;
            break;
        }
        //先计算当前位置右侧的峰值
        int right = nums[i + 1] - nums[i];
        //如果右侧峰值等于0,跳过
        if(right==0){
            continue;
        }

        //如果左右两侧峰值相乘小于0,表示当前位置是波峰或者波谷
        if(left*right<=0){
            ret++;
        }

        //将当前位置的右侧峰值赋值给左侧,表示下一个位置的左侧峰值
        left = right;
    }

    return ret;
}

以上就是关于贪心算法以及一些练习题的讲解,如果哪里有错的话,可以在评论区指正,也欢迎大家一起讨论学习,如果对你的学习有帮助的话,点点赞关注支持一下吧!!!
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2293473.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

基于Springboot框架的学术期刊遴选服务-项目演示

项目介绍 本课程演示的是一款 基于Javaweb的水果超市管理系统&#xff0c;主要针对计算机相关专业的正在做毕设的学生与需要项目实战练习的 Java 学习者。 1.包含&#xff1a;项目源码、项目文档、数据库脚本、软件工具等所有资料 2.带你从零开始部署运行本套系统 3.该项目附…

Java创建对象有几种方式?

大家好&#xff0c;我是锋哥。今天分享关于【Java创建对象有几种方式?】面试题。希望对大家有帮助&#xff1b; Java创建对象有几种方式? 1000道 互联网大厂Java工程师 精选面试题-Java资源分享网 在 Java 中&#xff0c;创建对象有几种常见的方式&#xff0c;具体如下&…

基于Flask的全国星巴克门店可视化分析系统的设计与实现

【FLask】基于Flask的全国星巴克门店可视化分析系统的设计与实现&#xff08;完整系统源码开发笔记详细部署教程&#xff09;✅ 目录 一、项目简介二、项目界面展示三、项目视频展示 一、项目简介 该系统采用Python作为主要开发语言&#xff0c;结合Flask框架进行后端开发&…

Golang :用Redis构建高效灵活的应用程序

在当前的应用程序开发中&#xff0c;高效的数据存储和检索的必要性已经变得至关重要。Redis是一个快速的、开源的、内存中的数据结构存储&#xff0c;为各种应用场景提供了可靠的解决方案。在这个完整的指南中&#xff0c;我们将学习什么是Redis&#xff0c;通过Docker Compose…

deepseek+vscode自动化测试脚本生成

近几日Deepseek大火,我这里也尝试了一下,确实很强。而目前vscode的AI toolkit插件也已经集成了deepseek R1,这里就介绍下在vscode中利用deepseek帮助我们完成自动化测试脚本的实践分享 安装AI ToolKit并启用Deepseek 微软官方提供了一个针对AI辅助的插件,也就是 AI Toolk…

【大数据技术】Day07:本机DataGrip远程连接虚拟机MySQL/Hive

本机DataGrip远程连接虚拟机MySQL/Hive datagrip-2024.3.4VMware Workstation Pro 16CentOS-Stream-10-latest-x86_64-dvd1.iso写在前面 本文主要介绍如何使用本机的DataGrip连接虚拟机的MySQL数据库和Hive数据库,提高编程效率。 安装DataGrip 请按照以下步骤安装DataGrip软…

大语言模型的个性化综述 ——《Personalization of Large Language Models: A Survey》

摘要&#xff1a; 本文深入解读了论文“Personalization of Large Language Models: A Survey”&#xff0c;对大语言模型&#xff08;LLMs&#xff09;的个性化领域进行了全面剖析。通过详细阐述个性化的基础概念、分类体系、技术方法、评估指标以及应用实践&#xff0c;揭示了…

[论文学习]Adaptively Perturbed Mirror Descent for Learning in Games

[论文学习]Adaptively Perturbed Mirror Descent for Learning in Games 前言概述前置知识和问题约定单调博弈&#xff08;monotone game&#xff09;Nash均衡和Gap函数文章问题定义Mirror Descent 方法评价 前言 文章链接 我们称集合是紧的&#xff0c;则集合满足&#xff1…

【Unity踩坑】Unity项目管理员权限问题(Unity is running as administrator )

问题描述&#xff1a; 使用Unity Hub打开或新建项目时会有下面的提示。 解决方法&#xff1a; 打开“本地安全策略”&#xff1a; 在Windows搜索栏中输入secpol.msc并回车&#xff0c;或者从“运行”对话框&#xff08;Win R&#xff0c;然后输入secpol.msc&#xff09;启…

一文讲解Java中的ArrayList和LinkedList

ArrayList和LinkedList有什么区别&#xff1f; ArrayList 是基于数组实现的&#xff0c;LinkedList 是基于链表实现的。 二者用途有什么不同&#xff1f; 多数情况下&#xff0c;ArrayList更利于查找&#xff0c;LinkedList更利于增删 由于 ArrayList 是基于数组实现的&#…

使用 DeepSeek-R1 与 AnythingLLM 搭建本地知识库

一、下载地址Download Ollama on macOS 官方网站&#xff1a;Ollama 官方模型库&#xff1a;library 二、模型库搜索 deepseek r1 deepseek-r1:1.5b 私有化部署deepseek&#xff0c;模型库搜索 deepseek r1 运行cmd复制命令&#xff1a;ollama run deepseek-r1:1.5b 私有化…

MapReduce分区

目录 1. MapReduce分区1.1 哈希分区1.2 自定义分区 2. 成绩分组2.1 Map2.2 Partition2.3 Reduce 3. 代码和结果3.1 pom.xml中依赖配置3.2 工具类util3.3 GroupScores3.4 结果 参考 本文引用的Apache Hadoop源代码基于Apache许可证 2.0&#xff0c;详情请参阅 Apache许可证2.0。…

【Spring】Spring Cloud Alibaba 版本选择及项目搭建笔记

文章目录 前言1. 版本选择2. 集成 Nacos3. 服务间调用4. 集成 Sentinel5. 测试后记 前言 最近重新接触了 Spring Cloud 项目&#xff0c;为此参考多篇官方文档重新搭建一次项目&#xff0c;主要实践&#xff1a; 版本选择&#xff0c;包括 Spring Cloud Alibaba、Spring Clou…

C语言实现统计字符串中不同ASCII字符个数

在C语言编程中&#xff0c;经常会遇到一些对字符串进行处理的需求&#xff0c;今天我们就来探讨如何统计给定字符串中ASCII码在0 - 127范围内不同字符的个数。这不仅是一个常见的算法问题&#xff0c;也有助于我们更好地理解C语言中数组和字符操作的相关知识。 问题描述 对于给…

保姆级教程Docker部署Zookeeper官方镜像

目录 1、安装Docker及可视化工具 2、创建挂载目录 3、运行Zookeeper容器 4、Compose运行Zookeeper容器 5、查看Zookeeper运行状态 6、验证Zookeeper是否正常运行 1、安装Docker及可视化工具 Docker及可视化工具的安装可参考&#xff1a;Ubuntu上安装 Docker及可视化管理…

DeepSeek R1 简易指南:架构、本地部署和硬件要求

DeepSeek 团队近期发布的DeepSeek-R1技术论文展示了其在增强大语言模型推理能力方面的创新实践。该研究突破性地采用强化学习&#xff08;Reinforcement Learning&#xff09;作为核心训练范式&#xff0c;在不依赖大规模监督微调的前提下显著提升了模型的复杂问题求解能力。 技…

【Linux系统】信号:再谈OS与内核区、信号捕捉、重入函数与 volatile

再谈操作系统与内核区 1、浅谈虚拟机和操作系统映射于地址空间的作用 我们调用任何函数&#xff08;无论是库函数还是系统调用&#xff09;&#xff0c;都是在各自进程的地址空间中执行的。无论操作系统如何切换进程&#xff0c;它都能确保访问同一个操作系统实例。换句话说&am…

自定义数据集 使用paddlepaddle框架实现逻辑回归

导入必要的库 import numpy as np import paddle import paddle.nn as nn 数据准备&#xff1a; seed1 paddle.seed(seed)# 1.散点输入 定义输入数据 data [[-0.5, 7.7], [1.8, 98.5], [0.9, 57.8], [0.4, 39.2], [-1.4, -15.7], [-1.4, -37.3], [-1.8, -49.1], [1.5, 75.6…

LabVIEW图片识别逆向建模系统

本文介绍了一个基于LabVIEW的图片识别逆向建模系统的开发过程。系统利用LabVIEW的强大视觉处理功能&#xff0c;通过二维图片快速生成对应的三维模型&#xff0c;不仅降低了逆向建模的技术门槛&#xff0c;还大幅提升了建模效率。 ​ 项目背景 在传统的逆向建模过程中&#xf…

MySQL(高级特性篇) 13 章——事务基础知识

一、数据库事务概述 事务是数据库区别于文件系统的重要特性之一 &#xff08;1&#xff09;存储引擎支持情况 SHOW ENGINES命令来查看当前MySQL支持的存储引擎都有哪些&#xff0c;以及这些存储引擎是否支持事务能看出在MySQL中&#xff0c;只有InnoDB是支持事务的 &#x…