强化学习笔记(5)——PPO

news2025/2/4 20:35:46

PPO视频课程来源
首先理解采样期望的转换
请添加图片描述

变量x在p(x)分布下,函数f(x)的期望 等于f(x)乘以对应出现概率p(x)的累加
经过转换后变成
x在q(x)分布下,f(x)*p(x)/q(x) 的期望。

起因是:求最大化回报的期望,所以对ceta求梯度

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

具体举例:上述公式计算的流程?如何求一条轨迹的梯度?
我理解就算是概率相乘在这里插入图片描述> 一回合的回报乘以该回合梯度除以该轨迹(s,a,r,s,a…)出现概率
如何求一条轨迹的梯度?
在这里插入图片描述

然后PPO 推倒,对数 概率连乘,等于概率累加

在这里插入图片描述

但这样有问题:用一整个回合的回报来计算梯度,会导致“未来的动作”影响过去的状态,且 优势情况下,惩罚不明显
于是改成:
在这里插入图片描述
在这里插入图片描述
将优势函数 转换成值函数表示,然后写出多步优势函数即推导出GAE在这里插入图片描述
其实就是用走了不同步的Q(s,a)-V(s) ,然后加权
在这里插入图片描述
加负号将最大化期望转成loss函数更新
PPO 使用了一个重要性采样比 在这里插入图片描述
这个比值衡量了新策略和旧策略在选择动作 at时的相对概率

在这里插入图片描述
为了防止:过去参数ceta’ 和 ceta 差距不要太大,有两种衡量方式;
1:KL散度 :这貌似又叫TRPO
2:clip截断防止差的太大

在这里插入图片描述

伪代码
在这里插入图片描述
用old策略网络做动作和环境交互,然后梯度更新,每过K个epochs将old参数复制给new

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2291966.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【MATLAB例程】TOA和AOA混合的高精度定位程序,适用于三维、N锚点的情况

代码实现了一个基于到达角(AOA)和到达时间(TOA)混合定位的例程。该算法能够根据不同基站接收到的信号信息,自适应地计算目标的位置,适用于多个基站的场景 文章目录 主要功能代码结构运行结果程序代码 主要功…

使用Pygame制作“青蛙过河”游戏

本篇博客将演示如何使用 Python Pygame 从零开始编写一款 Frogger 风格的小游戏。Frogger 是一款早期街机经典,玩家需要帮助青蛙穿越车水马龙的马路到达对岸。本示例提供了一个精简原型,包含角色移动、汽车生成与移动、碰撞检测、胜利条件等关键点。希望…

深度解读 Docker Swarm

一、引言 随着业务规模的不断扩大和应用复杂度的增加,容器集群管理的需求应运而生。如何有效地管理和调度大量的容器,确保应用的高可用性、弹性伸缩和资源的合理分配,成为了亟待解决的问题。Docker Swarm 作为 Docker 官方推出的容器集群管理工具,正是在这样的背景下崭露头…

8、面向对象:类、封装、构造方法

一、类 1、定义 类:对现实世界中事物的抽象。Student 对象:现实世界中具体的个体。张三、李四 这些具体的学生 面向对象的特征:抽象、封装、继承、多态 OOP: Object Oriented Programming(面向对象编程) 类和对象…

STM32 旋转编码器

旋转编码器简介 旋转编码器:用来测量位置、速度或旋转方向的装置,当其旋转轴旋转时,其输出端可以输出与旋转速度和方向对应的方波信号,读取方波信号的频率和相位信息即可得知旋转轴的速度和方向 类型:机械触点式/霍尔传…

git基础使用--4---git分支和使用

文章目录 git基础使用--4---git分支和使用1. 按顺序看2. 什么是分支3. 分支的基本操作4. 分支的基本操作4.1 查看分支4.2 创建分支4.3 切换分支4.4 合并冲突 git基础使用–4—git分支和使用 1. 按顺序看 -git基础使用–1–版本控制的基本概念 -git基础使用–2–gti的基本概念…

【算法】回溯算法专题③ ——排列型回溯 python

目录 前置小试牛刀回归经典举一反三总结 前置 【算法】回溯算法专题① ——子集型回溯 python 【算法】回溯算法专题② ——组合型回溯 剪枝 python 小试牛刀 全排列 https://leetcode.cn/problems/permutations/description/ 给定一个不含重复数字的数组 nums ,返…

Vue2.x简介

Vue2.x简介 Vue2.x的版本介绍Vue2.x的两大组件库 Vue2.x的版本介绍 Vue2.x是vue.js的第二个主要版本,最初版发布于2016 年,最终版发布于2023年12月24日(版本号:2.7.16,版本名:Swan Song(绝唱&a…

FFmpeg:多媒体处理的瑞士军刀

FFmpeg:多媒体处理的瑞士军刀 前言 FFmpeg 是一个功能强大且跨平台的开源多媒体框架,广泛应用于音视频处理领域。 它由多个库和工具组成,能够处理各种音视频格式,涵盖编码、解码、转码、流处理等多种操作。 无论是专业视频编辑…

【深度分析】DeepSeek大模型技术解析:从架构到应用的全面探索

深度与创新:AI领域的革新者 DeepSeek,这个由幻方量化创立的人工智能公司推出的一系列AI模型,不仅在技术架构上展现出了前所未有的突破,更在应用领域中开启了无限可能的大门。从其混合专家架构(MoE)到多头潜…

python学opencv|读取图像(五十五)使用cv2.medianBlur()函数实现图像像素中值滤波处理

【1】引言 在前述学习过程中,已经探索了取平均值的形式进行图像滤波处理。 均值滤波的具体的执行对象是一个nXn的像素核,对这个像素核内所有像素点的BGR值取平均值,然后把这个平均的BGR值直接赋给像素核中心位置的核心像素点,由…

OpenAI 再战机器人领域,重组机器人团队

OpenAI重组机器人团队?大家是不是和小编一样,听到这个消息后,脑子里瞬间浮现出科幻电影里机器人满街跑的场景?今天咱们就来看看背后的故事吧~ 作为人工智能领域的领头羊,OpenAI一直以来都在探索和扩展AI技术的深度和广…

Turing Complete-1位开关

要求如下: 我的思考: 把输入1当作控制信号,把输入2当作输出信号。 通过非门和开关使输入2形成双通道输出, 通道一为输出输入2取反。 通道二为输出输入2本身。 通过输入1来控制两个通道的开闭。

树莓派pico入坑笔记,睡眠

关于树莓派pico和circuitpython的更多玩法,请看树莓派pico专栏 关于在 CircuitPython 中使用警报和浅/深度睡眠的更多信息,请参阅此学习指南。 树莓派pico支持浅睡眠和深度睡眠,其中深度睡眠唤醒后将从boot.py开始运行 支持按时间唤醒和引…

数据库 - Sqlserver - SQLEXPRESS、由Windows认证改为SQL Server Express认证进行连接 (sa登录)

本文讲SqlServer Express版本在登录的时候, 如何由Windows认证,修改为Sql Server Express认证。 目录 1,SqlServer Express的Windows认证 2,修改为混合认证 3,启用sa 用户 4,用sa 用户登录 下面是详细…

中间件漏洞之CVE-2024-53677

目录 什么是struts?CVE-2024-53677简介影响版本复现环境搭建漏洞利用修复 什么是struts? 在早期的 Java Web 开发中,代码往往混乱不堪,难以维护和扩展。比如,一个简单的用户登录功能,可能在不同的 Java 类…

Python玄学

过年期间无聊的看了看DY直播,也是迷上玄学了。突然想着为啥要自己掐指算,我这🐷脑哪记得到那么多东西啊。然后,就捣鼓捣鼓了一些玩意儿。留个纪念。 注:就是一个玄学推动学习,部分内容不必当真,…

16.1.STM32F407ZGT6-CAN基础概念

参考: https://blog.csdn.net/sunlight_vip/article/details/128639144 前言: 学习总结CAN的知识点: 1.can是什么,历史由来和背景 2.can的物理层,链路层 3.初始化的流程和关键点 4.波特率怎么设置 5.can id怎么过滤 6…

【论文笔记】Fast3R:前向并行muti-view重建方法

众所周知,DUSt3R只适合做稀疏视角重建,与sapnn3r的目的类似,这篇文章以并行的方法,扩展了DUSt3R在多视图重建中的能力。 abstract 多视角三维重建仍然是计算机视觉领域的核心挑战,尤其是在需要跨不同视角实现精确且可…

使用VCS对Verilog/System Verilog进行单步调试的步骤

Verilog单步调试: System Verilog进行单步调试的步骤如下: 1. 编译设计 使用-debug_all或-debug_pp选项编译设计,生成调试信息。 我的4个文件: 1.led.v module led(input clk,input rst_n,output reg led );reg [7:0] cnt;alwa…