Spring AI 在微服务中的应用:支持分布式 AI 推理

news2025/1/31 9:24:19

1. 引言

在现代企业中,微服务架构 已成为开发复杂系统的主流方式,而 AI 模型推理 也越来越多地被集成到业务流程中。如何在分布式微服务架构下高效地集成 Spring AI,使多个服务可以协同完成 AI 任务,并支持分布式 AI 推理,是企业面临的关键挑战。

本篇文章将探讨:

  • 微服务架构中如何部署 Spring AI 服务;
  • 如何通过分布式 AI 推理提高推理性能与扩展性;
  • 典型应用场景,如电商推荐、智能客服、实时分析等。

2. Spring AI 在微服务架构中的集成方式

在微服务架构下,Spring AI 可以作为一个独立的 AI 推理服务,供其他微服务调用,或者嵌入到多个微服务中,实现分布式推理。

2.1 典型架构

在这里插入图片描述

在此架构中:

  • Spring AI 独立部署:一个单独的微服务,负责处理 AI 任务;
  • 微服务调用 AI 服务:各业务微服务(如用户管理、订单处理)通过 REST APIgRPC 调用 AI 推理服务;
  • 多个 AI 模型支持:AI 推理服务可以根据业务需求选择不同的 AI 模型(如 OpenAI、Hugging Face、TensorFlow 等)。

3. 实现 Spring AI 推理微服务

3.1 创建 Spring Boot AI 推理服务

首先,创建一个 Spring Boot 项目,并添加 Spring AI 依赖

Maven 依赖
<dependencies>
    <!-- Spring Boot Web 依赖 -->
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-web</artifactId>
    </dependency>

    <!-- Spring AI 依赖 -->
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-ai-openai</artifactId>
    </dependency>

    <!-- gRPC 支持(可选) -->
    <dependency>
        <groupId>io.grpc</groupId>
        <artifactId>grpc-spring-boot-starter</artifactId>
        <version>2.12.0.RELEASE</version>
    </dependency>
</dependencies>

3.2 统一 AI 推理接口

为了支持多个 AI 模型,我们定义一个AI 任务接口,让不同的 AI 任务实现这个接口。

public interface AiTaskService {
    String process(String input);
}

3.3 Spring AI 处理 AI 任务

OpenAI GPT 为例,我们创建一个 AI 任务的实现:

import org.springframework.ai.openai.OpenAiChatClient;
import org.springframework.stereotype.Service;

@Service
public class OpenAiTaskService implements AiTaskService {

    private final OpenAiChatClient chatClient;

    public OpenAiTaskService(OpenAiChatClient chatClient) {
        this.chatClient = chatClient;
    }

    @Override
    public String process(String input) {
        return chatClient.call(input);
    }
}

3.4 AI 推理 API

提供一个 RESTful API 供其他微服务调用:

import org.springframework.web.bind.annotation.*;

@RestController
@RequestMapping("/ai")
public class AiController {

    private final AiTaskService aiTaskService;

    public AiController(AiTaskService aiTaskService) {
        this.aiTaskService = aiTaskService;
    }

    @PostMapping("/process")
    public String processRequest(@RequestBody String input) {
        return aiTaskService.process(input);
    }
}

4. 分布式 AI 推理

在实际业务中,AI 推理通常会有较大的计算需求,因此可以采用以下方案分布式部署 AI 推理服务

4.1 负载均衡与 API Gateway

多个 Spring AI 微服务实例可以通过 API Gateway(如 Nginx 或 Spring Cloud Gateway) 进行负载均衡,提高可用性。

示例:Nginx 负载均衡

upstream ai-service {
    server ai-service-1:8080;
    server ai-service-2:8080;
}

server {
    location /ai/ {
        proxy_pass http://ai-service;
    }
}

4.2 gRPC 高效调用

相比 REST APIgRPC 具有更高的性能和低延迟,适用于大规模 AI 任务。

gRPC 服务端

import io.grpc.stub.StreamObserver;
import net.devh.boot.grpc.server.service.GrpcService;

@GrpcService
public class AiGrpcService extends AiTaskServiceGrpc.AiTaskServiceImplBase {

    @Override
    public void process(AiRequest request, StreamObserver<AiResponse> responseObserver) {
        String result = aiTaskService.process(request.getInput());
        responseObserver.onNext(AiResponse.newBuilder().setOutput(result).build());
        responseObserver.onCompleted();
    }
}

gRPC 客户端

@GrpcClient("aiService")
private AiTaskServiceGrpc.AiTaskServiceBlockingStub aiBlockingStub;

public String callAiModel(String input) {
    AiRequest request = AiRequest.newBuilder().setInput(input).build();
    return aiBlockingStub.process(request).getOutput();
}

5. 应用场景

5.1 智能客服系统

  • 业务需求
    • 客户咨询时,AI 需要提供实时回答。
  • 架构设计
    • 智能客服微服务调用 Spring AI 提供的 NLP 服务,实现智能问答。

5.2 电商推荐系统

  • 业务需求
    • 在用户浏览商品时,实时推荐相关产品。
  • 架构设计
    • 用户行为微服务 采集用户数据;
    • Spring AI 微服务 调用推荐模型;
    • 推荐微服务 生成推荐结果。

5.3 金融风控系统

  • 业务需求
    • 实时检测交易风险,防止欺诈行为。
  • 架构设计
    • 交易微服务 监控交易;
    • Spring AI 风控模型 分析欺诈风险;
    • 风控微服务 采取预防措施(如冻结账户)。

6. 总结

在微服务架构中,Spring AI 提供了强大的 AI 推理能力,可以通过 REST API 或 gRPC 进行调用,并结合 分布式部署 提高系统可扩展性。无论是在 智能客服、电商推荐、金融风控 还是其他 AI 任务中,Spring AI 都能提供灵活、高效的 AI 计算能力,为微服务架构中的 AI 任务提供强大的支持。

未来发展方向

  • 多模型支持(如 OpenAI + Hugging Face)
  • 边缘计算 AI 推理
  • 自动扩容与动态调度 AI 计算资源

通过本文的介绍,相信你已经掌握了 Spring AI 在微服务架构中的应用方式,并可以在自己的项目中进行实践! 🚀

此外,今天是农历正月初一,祝各位精神股东春节快乐~!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2286851.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

QT串口通信,实现单个温湿度传感器数据的采集

1、硬件设备 RS485中继器(一进二出),usb转485模块、电源等等 => 累计115元左右。 2、核心代码 #include "MainWindow.h" #include "ui_MainWindow.h"MainWindow::

DeepSeek R1:中国AI黑马的崛起与挑战

文章目录 技术突破&#xff1a;从零开始的推理能力进化DeepSeek R1-Zero&#xff1a;纯RL训练的“自我觉醒”DeepSeek R1&#xff1a;冷启动与多阶段训练的平衡之道 实验验证&#xff1a;推理能力的全方位跃升基准测试&#xff1a;超越顶尖闭源模型蒸馏技术&#xff1a;小模型的…

MFC开发,给对话框添加垂直滚动条并解决鼠标滚动响应的问题

无论在使用QT或者MFC进行界面开发时&#xff0c;都会出现在一个对话框里面存在好多的选项&#xff0c;导致对话框变得非常长或者非常大&#xff0c;就会显现的不美观&#xff0c;在这种情况下通常是添加一个页面的滚动条来解决这个问题&#xff0c;下面我们就来介绍给MFC的对话…

php接口连接数据库

框架&#xff1a;https://www.thinkphp.cn/doc 创建网站 域名自己写 创建文件夹&#xff0c;“test”拉取框架&#xff0c;地址栏输入 composer create-project topthink/think5.1.* tp5 会自动创建一个tp5文件夹 根目录选择刚刚创建拉框架的文件夹 以test为示例 “D:\test\…

【卫星通信】链路预算方法

本文介绍卫星通信中的链路预算方法&#xff0c;应该也适用于地面通信场景。 更多内容请关注gzh【通信Online】 文章目录 下行链路预算卫星侧参数信道参数用户侧参数 上行链路预算链路预算计算示例 下行链路预算 卫星侧参数 令卫星侧天线数为 M t M_t Mt​&#xff0c;每根天线…

解析静态链接

文章目录 静态链接空间与地址分配相似段合并虚拟地址分配符号地址确定符号解析与重定位链接器优化重复代码消除函数链接级别静态库静态链接优缺点静态链接 一组目标文件经过链接器链接后形成的文件即可执行文件,如果没有动态库的加入,那么这个可执行文件被加载后无需再进行重…

【C语言】函数递归

目录 1. 什么是递归 1.1 递归的思想&#xff1a; 1.2 递归的限制条件 2. 递归的限制条件 2.1 举例1&#xff1a;求n的阶乘 2.1.1 分析和代码实现 2.1.2 画图推演 2.2 举例2&#xff1a;顺序打印⼀个整数的每⼀位 2.2.1 分析和代码实现 2.2.2 画图推演 3. 递归与迭代…

从0到1:C++ 开启游戏开发奇幻之旅(二)

目录 游戏开发核心组件设计 游戏循环 游戏对象管理 碰撞检测 人工智能&#xff08;AI&#xff09; 与物理引擎 人工智能 物理引擎 性能优化技巧 内存管理优化 多线程处理 实战案例&#xff1a;开发一个简单的 2D 射击游戏 项目结构设计 代码实现 总结与展望 游戏…

线性调整器——耗能型调整器

线性调整器又称线性电压调节器&#xff0c;以下是关于它的介绍&#xff1a; 基本工作原理 线性调整器的基本电路如图1.1(a)所示,晶体管Q1(工作于线性状态,或非开关状态)构成一个连接直流源V和输出端V。的可调电气电阻,直流源V由60Hz隔离变压器&#xff08;电气隔离和整流&#…

C语言编译过程全面解析

今天是2025年1月26日&#xff0c;农历腊月二十七&#xff0c;一个距离新春佳节仅一步之遥的日子。城市的喧嚣中&#xff0c;年味已悄然弥漫——能在这个时候坚持上班的人&#xff0c;真可称为“牛人”了吧&#xff0c;哈哈。。。。 此刻&#xff0c;我在重新审视那些曾被遗忘的…

谈谈出国留学文书PS写作中的注意事项

在上期&#xff0c;小编介绍出国留学文书PS正文写作的几个可以采用的技巧。总之在正文的写作中&#xff0c;要避免将PS写成个人简历的repetition。也就是说不要将你目前所做的事情再次在PS中重述一遍&#xff0c;留学PS不是对你的工作经历或者学习经历的重复&#xff0c;而是需…

汇编基础语法及其示例

1.汇编指令 1.1汇编指令的基本格式 <opcode>{<cond>}{s} <Rd> , <Rn> , <shifter_operand> <功能码>{<条件码>}{cpsr影响位} <目标寄存器> , <第一操作寄存器> , <第二操作数> 注&#xff1a;第一操作寄存器…

学习ASP.NET Core的身份认证(基于JwtBearer的身份认证10)

基于Cookie传递token的主要思路是通过用户身份验证后&#xff0c;将生成的token保存到Response.Cookies返回客户端&#xff0c;后续客户端访问服务接口时会自动携带Cookie到服务端以便验证身份。之前一直搞不清楚的是服务端程序如何从Cookie读取token进行认证&#xff08;一般都…

Ollama 运行从 ModelScope 下载的 GGUF 格式的模型

本文系统环境 Windows 10 Ollama 0.5.7 Ollama 是什么&#xff1f; Ollama 可以让你快速集成和部署本地 AI 模型。它支持各种不同的 AI 模型&#xff0c;并允许用户通过简单的 API 进行调用 Ollama 的安装 Ollama 官网 有其下载及安装方法&#xff0c;非常简便 但如果希…

SpringBoot 整合 SSM

文章目录 SpringBoot 整合 SSM第一步&#xff1a;使用 Spring Initializr 创建项目第二步&#xff1a;现在配置类中配置数据库第三步&#xff1a;进行 MyBatis 相关操作编写数据表对应的实体类创建 mapper 接口利用 MyBaitsX 插件快速创建 xml 文件创建 Mapper 接口 SQL 实现在…

护眼好帮手:Windows显示器调节工具

在长时间使用电脑的过程中&#xff0c;显示器的亮度和色温对眼睛的舒适度有着重要影响。传统的显示器调节方式不仅操作繁琐&#xff0c;而且在低亮度下容易导致色彩失真。因此&#xff0c;今天我想为大家介绍一款适用于Windows系统的护眼工具&#xff0c;它可以帮助你轻松调节显…

基于Python的人工智能患者风险评估预测模型构建与应用研究(下)

3.3 模型选择与训练 3.3.1 常见预测模型介绍 在构建患者风险评估模型时,选择合适的预测模型至关重要。不同的模型具有各自的优缺点和适用场景,需要根据医疗数据的特点、风险评估的目标以及计算资源等因素进行综合考虑。以下详细介绍几种常见的预测模型。 逻辑回归(Logisti…

【NLP251】意图识别 与 Seq2Seq

Seq2Seq模型作为从RNN演进到Transformer和Attention机制的关键中间阶段&#xff0c;它不仅承前启后&#xff0c;还为我们深入理解这些复杂的模型架构提供了重要的基础。接下来&#xff0c;我们将详细探讨Seq2Seq模型的原理及其在自然语言处理领域中的应用。 1. 原理及网络框架 …

(长期更新)《零基础入门 ArcGIS(ArcMap) 》实验六----流域综合处理(超超超详细!!!)

流域综合处理 流域综合治理是根据流域自然和社会经济状况及区域国民经济发展的要求,以流域水流失治理为中心,以提高生态经济效益和社会经济持续发展为目标,以基本农田优化结构和高效利用及植被建设为重点,建立具有水土保持兼高效生态经济功能的半山区流域综合治理模式。数字高程…