JUC--ConcurrentHashMap底层原理

news2025/1/30 17:21:45

ConcurrentHashMap底层原理

  • ConcurrentHashMap
    • JDK1.7
      • 底层结构
      • 线程安全底层具体实现
    • JDK1.8
      • 底层结构
      • 线程安全底层具体实现
    • 总结
      • JDK 1.7 和 JDK 1.8实现有什么不同?
      • ConcurrentHashMap 中的 CAS 应用

ConcurrentHashMap

ConcurrentHashMap 是一种线程安全的高效Map集合

底层数据结构:

  • JDK1.7底层采用分段的数组+链表实现
  • JDK1.8 采用的数据结构跟HashMap1.8的结构一样,数组+链表/红黑二叉树。

JDK1.7

底层结构

image-20250128100021706

ConcurrentHashMap 是由 Segment 数组结构和 HashEntry 数组结构组成。

Segment 数组中的每个元素包含一个 HashEntry 数组,每个 HashEntry 数组属于链表结构。

线程安全底层具体实现

image-20250128101358835

首先将数据分为一段一段(这个“段”就是 Segment)的存储,然后给每一段数据配一把锁,当一个线程占用锁访问其中一个段数据时,其他段的数据也能被其他线程访问。

ConcurrentHashMap 是由 Segment 数组结构和 HashEntry 数组结构组成

Segment 继承了 ReentrantLock,所以 Segment 是一种可重入锁,扮演锁的角色。HashEntry 用于存储键值对数据。

static class Segment<K,V> extends ReentrantLock implements Serializable {
}

一个 ConcurrentHashMap 里包含一个 Segment 数组,Segment 的个数一旦初始化就不能改变Segment 数组的大小默认是 16,也就是说默认可以同时支持 16 个线程并发写。

Segment 的结构和 HashMap 类似,是一种数组和链表结构,一个 Segment 包含一个 HashEntry 数组,每个 HashEntry 是一个链表结构的元素,每个 Segment 守护着一个 HashEntry 数组里的元素,当对 HashEntry 数组的数据进行修改时,必须首先获得对应的 Segment 的锁。也就是说,对同一 Segment 的并发写入会被阻塞,不同 Segment 的写入是可以并发执行的。

JDK1.8

底层结构

image-20250128101023428

JDK1.8 的 ConcurrentHashMap 不再是 Segment 数组 + HashEntry 数组 + 链表,而是 Node 数组 + 链表 / 红黑树。不过,Node 只能用于链表的情况,红黑树的情况需要使用 TreeNode。当冲突链表达到一定长度时,链表会转换成红黑树。

线程安全底层具体实现

ConcurrentHashMap 取消了 Segment 分段锁,采用 Node + CAS + synchronized 来保证并发安全。数据结构跟 HashMap 1.8 的结构类似,数组+链表/红黑二叉树。Java 8 在链表长度超过一定阈值(8)时将链表(寻址时间复杂度为 O(N))转换为红黑树(寻址时间复杂度为 O(log(N)))。

Java 8 中,锁粒度更细,synchronized 只锁定当前链表或红黑二叉树的首节点,这样只要 hash 不冲突,就不会产生并发,就不会影响其他 Node 的读写,效率大幅提升。

底层源码:

image-20241223164349469

public V put(K key, V value) {
    return putVal(key, value, false);
}

/** Implementation for put and putIfAbsent */
final V putVal(K key, V value, boolean onlyIfAbsent) {
    // key 和 value 不能为空
    if (key == null || value == null) throw new NullPointerException();
    int hash = spread(key.hashCode());
    int binCount = 0;
    for (Node<K,V>[] tab = table;;) {
        // f = 目标位置元素
        Node<K,V> f; int n, i, fh;// fh 后面存放目标位置的元素 hash 值
        if (tab == null || (n = tab.length) == 0)
            // 数组桶为空,初始化数组桶(自旋+CAS)
            tab = initTable();
        else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
            // 桶内为空,CAS 放入,不加锁,成功了就直接 break 跳出
            if (casTabAt(tab, i, null,new Node<K,V>(hash, key, value, null)))
                break;  // no lock when adding to empty bin
        }
        else if ((fh = f.hash) == MOVED)
            tab = helpTransfer(tab, f);
        else {
            V oldVal = null;
            // 使用 synchronized 加锁加入节点
            synchronized (f) {
                if (tabAt(tab, i) == f) {
                    // 说明是链表
                    if (fh >= 0) {
                        binCount = 1;
                        // 循环加入新的或者覆盖节点
                        for (Node<K,V> e = f;; ++binCount) {
                            K ek;
                            if (e.hash == hash &&
                                ((ek = e.key) == key ||
                                 (ek != null && key.equals(ek)))) {
                                oldVal = e.val;
                                if (!onlyIfAbsent)
                                    e.val = value;
                                break;
                            }
                            Node<K,V> pred = e;
                            if ((e = e.next) == null) {
                                pred.next = new Node<K,V>(hash, key,value, null);
                                break;
                            }
                        }
                    }
                    else if (f instanceof TreeBin) {
                        // 红黑树
                        Node<K,V> p;
                        binCount = 2;
                        if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,value)) != null) {
                            oldVal = p.val;
                            if (!onlyIfAbsent)
                                p.val = value;
                        }
                    }
                }
            }
            if (binCount != 0) {
                if (binCount >= TREEIFY_THRESHOLD)
                    treeifyBin(tab, i);
                if (oldVal != null)
                    return oldVal;
                break;
            }
        }
    }
    addCount(1L, binCount);
    return null;
}

工作步骤:

  1. 初始化,使用 cas 来保证并发安全,懒惰初始化 table
  2. 树化,当 table.length < 64 时,先尝试扩容,超过 64 时,并且 bin.length > 8 时,会将链表树化,树化过程会用 synchronized 锁住链表头
    说明:锁住某个槽位的对象头,是一种很好的细粒度的加锁方式,类似 MySQL 中的行锁
  3. put,如果该 bin 尚未创建,只需要使用 cas 创建 bin;如果已经有了,锁住链表头进行后续 put操作,元素添加至 bin 的尾部
  4. get,无锁操作仅需要保证可见性,扩容过程中 get 操作拿到的是 ForwardingNode 会让 get 操作在新 table 进行搜索
  5. 扩容,扩容时以 bin 为单位进行,需要对 bin 进行 synchronized,但这时其它竞争线程也不是无事可做,它们会帮助把其它 bin 进行扩容
  6. size,元素个数保存在 baseCount 中,并发时的个数变动保存在 CounterCell[] 当中,最后统计数量时累加

总结

JDK 1.7 和 JDK 1.8实现有什么不同?

  • 线程安全实现方式:JDK 1.7 采用 Segment 分段锁来保证安全, Segment 是继承自 ReentrantLock。JDK1.8 放弃了 Segment 分段锁的设计,采用 Node + CAS + synchronized 保证线程安全,锁粒度更细,synchronized 只锁定当前链表或红黑二叉树的首节点。
  • Hash 碰撞解决方法 : JDK 1.7 采用拉链法,JDK1.8 采用拉链法结合红黑树(链表长度超过一定阈值时,将链表转换为红黑树)。
  • 并发度:JDK 1.7 最大并发度是 Segment 的个数,默认是 16。JDK 1.8 最大并发度是 Node 数组的大小,并发度更大。

ConcurrentHashMap 中的 CAS 应用

ConcurrentHashMap 是 Java 中高效的并发集合类,它通过结合使用 CAS 和 synchronized 来保证线程安全性。

  • CAS:用于在没有锁的情况下保证单个桶(bucket)中的线程安全更新,尤其是 putIfAbsent()replace() 等操作。每个桶内部通常是通过 CAS 来完成插入、删除和更新操作,减少了全表锁定的情况,提高了性能。

    示例: 在 ConcurrentHashMapputIfAbsent 方法中,CAS 用来判断当前桶内是否已有值,如果没有,则将新值插入。

    void putIfAbsent(K key, V value) {
        int hash = hash(key);
        Node<K,V> node = table[hash & (table.length - 1)];
        // 使用 CAS 保证插入操作的线程安全
        if (node == null || cas(node, null, value)) {
            return value;
        }
        return null;
    }
    
  • synchronized:在一些较为复杂的操作(比如扩容、迭代器遍历时)中,仍然使用 synchronized 来保证线程安全。

通过这样的组合,ConcurrentHashMap 既能避免在并发情况下对整个数据结构加锁,提高效率,又能在需要的时候通过 synchronized 保证一致性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2285022.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Sklearn 中的逻辑回归

逻辑回归的数学模型 基本模型 逻辑回归主要用于处理二分类问题。二分类问题对于模型的输出包含 0 和 1&#xff0c;是一个不连续的值。分类问题的结果一般不能由线性函数求出。这里就需要一个特别的函数来求解&#xff0c;这里引入一个新的函数 Sigmoid 函数&#xff0c;也成…

Spring Boot 自定义属性

Spring Boot 自定义属性 在 Spring Boot 应用程序中&#xff0c;application.yml 是一个常用的配置文件格式。它允许我们以层次化的方式组织配置信息&#xff0c;并且比传统的 .properties 文件更加直观。 本文将介绍如何在 Spring Boot 中读取和使用 application.yml 中的配…

1.2第1章DC/DC变换器的动态建模-1.2Buck-Boost 变换器的交流模型--电力电子系统建模及控制 (徐德鸿)--读书笔记

1.2 Buck-Boost 变换器的交流模型 Buck- Boost变换器是一种典型的DC/DC变换器&#xff0c;具有升压和降压功能其输出电压的极性与输入电压相反&#xff0c;见图1-4a。当电感L的电流i(t)连续时一个开关周期可以分为两个阶段。在阶段1&#xff0c;开关在位置1时&#xff0c;即&am…

数据结构:二叉树—面试题(一)

目录 1、相同的树 2、另一棵树的子树 3、翻转二叉树 4、平衡二叉树 5、对称二叉树 6、二叉树遍历 7、二叉树的分层遍历 1、相同的树 习题链接https://leetcode.cn/problems/same-tree/description/ 描述&#xff1a; 给你两棵二叉树的根节点 p 和 q &#xff0c;编写一…

LangChain概述

文章目录 为什么需要LangChainLLM应用开发的最后1公里LangChain的2个关键词LangChain的3个场景LangChain的6大模块 为什么需要LangChain 首先想象一个开发者在构建一个LLM应用时的常见场景。当你开始构建一个新项目时&#xff0c;你可能会遇到许多API接口、数据格式和工具。对于…

Java基于SSM框架的互助学习平台小程序【附源码、文档】

博主介绍&#xff1a;✌IT徐师兄、7年大厂程序员经历。全网粉丝15W、csdn博客专家、掘金/华为云//InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专栏推荐订阅&#x1f447;&#x1f3…

lightweight-charts-python 包 更新 lightweight-charts.js 的方法

lightweight-charts-python 是 lightweight-charts.js 的 python 包装&#xff0c;非常好用 lightweight-charts 更新比较频繁&#xff0c;导致 lightweight-charts-python 内置的 lightweight-charts 经常不是最新的。 新的 lightweight-charts 通常可以获得性能改进和bug修复…

React第二十七章(Suspense)

Suspense Suspense 是一种异步渲染机制&#xff0c;其核心理念是在组件加载或数据获取过程中&#xff0c;先展示一个占位符&#xff08;loading state&#xff09;&#xff0c;从而实现更自然流畅的用户界面更新体验。 应用场景 异步组件加载&#xff1a;通过代码分包实现组件…

解决报错“The layer xxx has never been called and thus has no defined input shape”

解决报错“The layer xxx has never been called and thus has no defined input shape”(这里写自定义目录标题) 报错显示 最近在跑yolo的代码时遇到这样一个错误&#xff0c;显示“the layer {self.name} has never been called”.这个程序闲置了很久&#xff0c;每次一遇到…

【AI论文】FilmAgent: 一个用于虚拟3D空间中端到端电影制作自动化的多智能体框架

摘要&#xff1a;虚拟电影制作涉及复杂的决策过程&#xff0c;包括剧本编写、虚拟摄影以及演员的精确定位和动作设计。受近期基于语言智能体社会的自动化决策领域进展的启发&#xff0c;本文提出了FilmAgent&#xff0c;这是一个新颖的、基于大型语言模型&#xff08;LLM&#…

hive:数据导入,数据导出,加载数据到Hive,复制表结构

hive不建议用insert,因为Hive是建立在Hadoop之上的数据仓库工具&#xff0c;主要用于批处理和大数据分析&#xff0c;而不是为OLTP&#xff08;在线事务处理&#xff09;操作设计的。INSERT操作会非常慢 数据导入 命令行界面:建一个文件 查询数据>>复制>>粘贴到新…

VUE之路由Props、replace、编程式路由导航、重定向

目录 1、路由_props的配置 2、路由_replaces属性 3、编程式路由导航 4、路由重定向 1、路由_props的配置 1&#xff09;第一种写法&#xff0c;将路由收到的所有params参数作为props传给路由组件 只能适用于params参数 // 创建一个路由器&#xff0c;并暴露出去// 第一步…

【开源免费】基于Vue和SpringBoot的社区智慧养老监护管理平台(附论文)

本文项目编号 T 163 &#xff0c;文末自助获取源码 \color{red}{T163&#xff0c;文末自助获取源码} T163&#xff0c;文末自助获取源码 目录 一、系统介绍二、数据库设计三、配套教程3.1 启动教程3.2 讲解视频3.3 二次开发教程 四、功能截图五、文案资料5.1 选题背景5.2 国内…

excel如何查找一个表的数据在另外一个表是否存在

比如“Sheet1”有“张三”、“李四”“王五”三个人的数据&#xff0c;“Sheet2”只有“张三”、“李四”的数据。我们通过修改“Sheet1”的“民族”或者其他空的列&#xff0c;修改为“Sheet2”的某一列。这样修改后筛选这个修改的列为空的或者为出错的&#xff0c;就能找到两…

当AI学会“顿悟”:DeepSeek-R1如何用强化学习突破推理边界?

开篇&#xff1a;一场AI的“青春期叛逆” 你有没有想过&#xff0c;AI模型在学会“推理”之前&#xff0c;可能也经历过一段“中二时期”&#xff1f;比如&#xff0c;解题时乱写一通、语言混搭、答案藏在火星文里……最近&#xff0c;一支名为DeepSeek-AI的团队&#xff0c;就…

(Java版本)基于JAVA的网络通讯系统设计与实现-毕业设计

源码 论文 下载地址&#xff1a; ​​​​c​​​​​​c基于JAVA的网络通讯系统设计与实现(源码系统论文&#xff09;https://download.csdn.net/download/weixin_39682092/90299782https://download.csdn.net/download/weixin_39682092/90299782 第1章 绪论 1.1 课题选择的…

STM32调试手段:重定向printf串口

引言 C语言中经常使用printf来输出调试信息&#xff0c;打印到屏幕。由于在单片机中没有屏幕&#xff0c;但是我们可以重定向printf&#xff0c;把数据打印到串口&#xff0c;从而在电脑端接收调试信息。这是除了debug外&#xff0c;另外一个非常有效的调试手段。 一、什么是pr…

基于Flask的哔哩哔哩评论数据可视化分析系统的设计与实现

【Flask】基于Flask的哔哩哔哩评论数据可视化分析系统的设计与实现&#xff08;完整系统源码开发笔记详细部署教程&#xff09;✅ 目录 一、项目简介二、项目界面展示三、项目视频展示 一、项目简介 该系统可以搜索查看作者、播放量、评论等相关信息&#xff0c;并将相关的分析…

YOLO目标检测4

一. 参考资料 《YOLO目标检测》 by 杨建华博士 本篇文章的主要内容来自于这本书&#xff0c;只是作为学习记录进行分享。 二. 环境搭建 (1) ubuntu20.04 anaconda安装方法 (2) 搭建yolo训练环境 # 首先&#xff0c;我们建议使用Anaconda来创建一个conda的虚拟环境 conda cre…

​ONES 春节假期服务通知

ONES 春节假期服务通知 灵蛇贺岁&#xff0c;瑞气盈门。感谢大家一直以来对 ONES 的认可与支持&#xff0c;祝您春节快乐&#xff01; 「2025年1月28日 &#xff5e; 2025年2月4日」春节假期期间&#xff0c;我们的值班人员将为您提供如下服务 &#xff1a; 紧急问题 若有紧急问…