神经网络|(二)sigmoid神经元函数

news2025/1/27 14:21:12

【1】引言

在前序学习进程中,我们已经了解了基本的二元分类器和神经元的构成,文章学习链接为:

神经网络|(一)加权平均法,感知机和神经元-CSDN博客

在此基础上,我们认识到神经元本身在做二元分类,是一种非此即彼的选择。

由于不同的数据所占的权重不同,二元分类结果也一定收到权重的影响,为此,必须使用数学表达这种影响力。

在神经网络相关研究的漫长发展进程中,研究范围从单个因素到多个因素,必须关注无数的二元分类结果同时作用后获得的最终分类结果,于是sigmoid()函数被提出。

【2】二元分类结果数学表达

认识感知机的二元分类本质,是研究sigmoid()函数的基础。

这里先创造四个矩阵,这三个矩阵分别代表元素1,元素2,元素1和权重和元素2的权重。

import numpy as np #引入numpy模块
import matplotlib.pyplot as plt #引入matplotlib模块

#创造矩阵
a = np.random.randint(5,9,size=(1,5)) #矩阵
b = np.random.randint(1,5,size=(1,5)) #矩阵
c = np.random.randn(1,5) #矩阵
d = np.random.randn(1,5) #矩阵
#阈值开关
k=1
#空矩阵
e =np.zeros((1,5),np.uint8) #用来存储二元分类的计算结果

进行二元分类计算:

#二元分类计算
for i in range (5):
    if a[0,i]*c[0,i]+b[0,i]*d[0,i]-k>0: #阈值计算,满足条件时取1,否则取0
        e[0,i]=1
    else:
        e[0,i]=0
    print('e[0,',i,']=',e[0,i]) #输出阈值计算结果

绘制二元分类的效果:

#绘制二元分类计算的结果
print('a=',a) #输出矩阵
print('b=',b) #输出矩阵
print('c=',c) #输出矩阵
print('d=',d) #输出矩阵
x=np.arange(0,5,1) #定义一个自变量
plt.plot(x,e[0,x]) #对阈值计算结果绘图
plt.savefig('ganzhiji.png') #保存图像
plt.show() #输出图像

这里使用的阈值判断函数为:

for i in range (5):
    if a[0,i]*c[0,i]+b[0,i]*d[0,i]-k>0: #阈值计算,满足条件时取1,否则取0
        e[0,i]=1
    else:
        e[0,i]=0

代码运行后的输出图像为:

图1

图1真实地反映了非此即彼的二元分类效果。

需要注意的是,由于元素的权重使用随机数生成,所以每次运行上述程序,获得的效果可能不一样。

【3】sigmoid函数

实际上,二元分类效果可能不是两个元素算一次就进行判断,而是多个结果互相叠加在一起,也就是把阈值判断函数改为:

f=0 #用来存储二元分类的综合计算结果
#二元分类计算
for i in range (5):
    if i==0:
        e[0, i] = a[0, i] * c[0, i] + b[0, i] * d[0, i] - k  # 阈值计算
    else:
        e[0, i] = a[0, i] * c[0, i] + b[0, i] * d[0, i] - k+e[0,i-1]  # 阈值计算
if e[0,4]>0: #最后计算结果,超过阈值开关取1,否则取0
    f=1
else:
    f=0

代码运行后,获得的输出图像为:

图2

此时获得的数据分别为:

图3

由图3可见,因为最后的e[0,4]>0,所以f=1。

此时的完整代码为:

import numpy as np #引入numpy模块
import matplotlib.pyplot as plt #引入matplotlib模块

#创造矩阵
a = np.random.randint(5,9,size=(1,5)) #矩阵
b = np.random.randint(1,5,size=(1,5)) #矩阵
c = np.random.randn(1,5) #矩阵
d = np.random.randn(1,5) #矩阵
#阈值开关
k=1
#空矩阵
e =np.zeros((1,5),np.uint8) #用来存储二元分类的计算结果
f=0 #用来存储二元分类的综合计算结果
#二元分类计算
for i in range (5):
    if i==0:
        e[0, i] = a[0, i] * c[0, i] + b[0, i] * d[0, i] - k  # 阈值计算
    else:
        e[0, i] = a[0, i] * c[0, i] + b[0, i] * d[0, i] - k+e[0,i-1]  # 阈值计算
if e[0,4]>0: #最后计算结果,超过阈值开关取1,否则取0
    f=1
else:
    f=0

#绘制二元分类计算的结果
print('a=',a) #输出矩阵
print('b=',b) #输出矩阵
print('c=',c) #输出矩阵
print('d=',d) #输出矩阵
print('e=',e) #输出矩阵
print('f=',f) #输出矩阵
x=np.arange(0,5,1) #定义一个自变量
plt.plot(x,e[0,x]) #对阈值计算结果绘图
plt.savefig('ganzhiji.png') #保存图像
plt.show() #输出图像

sigmoid()函数就是在上述基础上,进一步优化函数表达式,把所有的加权计算结果变成指数函数的变量,并且指数函数还设置成分式的一部分。相应的,有如下函数:

f(x)=\frac{1}{1+exp(-\sum {w}_j{x}_j-b)}

如果把-w_{j}x_{j}-b简化为-x,该函数相应简化为:

f(x)=\frac{1}{1+exp(-x)}

函数对应的图像为:

图4

图4是平滑过渡图像,并且输出结果限定在(0,1)范围内。

绘制图4的代码为:

import numpy as np #引入numpy模块
import matplotlib.pyplot as plt #引入matplotlib模块

#创造矩阵
t=np.linspace(-10,10,100) #自变量
y0=np.exp(-t) #指数函数
y=1/(1+y0) #因变量
plt.plot(t,y) #绘制图像
plt.title('sigmoid() function') #图像上设置图名
plt.savefig('sigmoid() function.png') #保存图像
plt.show() #显示图像

【4】函数验证

为验证sigmoid()函数,可以在上述示例中的代码plt.plot(x,e[0,x]) #对阈值计算结果绘图

修改为:

plt.plot(x,1/(1+np.exp(-e[0,x]))) #对阈值计算结果绘图

此时运行代码获得的图像为:

图5

由图5可见,复杂多变的实际情况中,sigmoid()函数的输出结果也是在(0,1)范围内。所以,sigmoid()函数本身具有很强的实用性。

此时的完整代码为:

import numpy as np #引入numpy模块
import matplotlib.pyplot as plt #引入matplotlib模块

#创造矩阵
a = np.random.randint(5,9,size=(1,5)) #矩阵
b = np.random.randint(1,5,size=(1,5)) #矩阵
c = np.random.randn(1,5) #矩阵
d = np.random.randn(1,5) #矩阵
#阈值开关
k=1
#空矩阵
e =np.zeros((1,5),np.uint8) #用来存储二元分类的计算结果
f=0 #用来存储二元分类的综合计算结果
#二元分类计算
for i in range (5):
    if i==0:
        e[0, i] = a[0, i] * c[0, i] + b[0, i] * d[0, i] - k  # 阈值计算
    else:
        e[0, i] = a[0, i] * c[0, i] + b[0, i] * d[0, i] - k+e[0,i-1]  # 阈值计算
if e[0,4]>0: #最后计算结果,超过阈值开关取1,否则取0
    f=1
else:
    f=0

#绘制二元分类计算的结果
print('a=',a) #输出矩阵
print('b=',b) #输出矩阵
print('c=',c) #输出矩阵
print('d=',d) #输出矩阵
print('e=',e) #输出矩阵
print('f=',f) #输出矩阵
x=np.arange(0,5,1) #定义一个自变量
plt.plot(x,1/(1+np.exp(-e[0,x]))) #对阈值计算结果绘图
plt.savefig('sigmoid.png') #保存图像
plt.show() #输出图像

需要注意的是,由于元素的权重使用随机数生成,所以每次运行上述程序,获得的效果可能不一样。

【5】总结

探究了sigmoid()函数,研究了多因素的综合作用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2283973.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

云原生:构建现代化应用的基石

一、什么是云原生? 云原生是一种构建和运行应用程序的方法,旨在充分利用云计算的分布式系统优势,例如弹性伸缩、微服务架构、容器化技术等。云原生应用程序从设计之初就考虑到了云环境的特点,能够更好地适应云平台的动态变化&…

【浏览器 - Chrome调试模式,如何输出浏览器中的更多信息】

在开发过程中,如果不主动console.log,浏览器中的信息有些不会主动输出到 控制台console里面。这个如果是一些浏览器内部的接口调试,则会很麻烦。比如RTCPeerConnection过程 ,RTCPeerConnection属于浏览器内部的方法,其…

MapReduce,Yarn,Spark理解与执行流程

MapReduce的API理解 Mapper 如果是单词计数:hello:1, hello:1, world:1 public void map(Object key, // 首字符偏移量Text value, // 文件的一行内容Context context) // Mapper端的上下文,…

unity导入图片素材注意点和AI寻路模块导入

当我们导入了图片资源,我们需要设置为Sprite类型 UI资源的位置通常是Rect Transform 要进行转化: (imgHP.transform as RectTransform).sizeDelta new Vector2((float)hp / maxHP * hpW,74); RectTransform 是Unity中用于UI元素的特殊变换组件&#…

单片机-STM32 IIC通信(OLED屏幕)(十一)

一、屏幕的分类 1、LED屏幕: 由无数个发光的LED灯珠按照一定的顺序排列而成,当需要显示内容的时候,点亮相关的LED灯即可,市场占有率很高,主要是用于户外,广告屏幕,成本低。 LED屏是一种用发光…

Windows Docker Desktop安装及使用 Docker 运行 MySQL

Docker Desktop是Docker的官方桌面版,专为Mac和Windows用户设计,提供了一个简单易用的界面来管理和运行Docker容器。它集成了Docker引擎,为开发人员提供了一个快速、可靠、可扩展的方式来构建、运行和管理应用。DockerDesktop的优势在于&…

Day21-【软考】短文,计算机网络开篇,OSI七层模型有哪些协议?

文章目录 OSI七层模型有哪些?有哪些协议簇?TCP/IP协议簇中的TCP协议三次握手是怎样的?基于UDP的DHCP协议是什么情况?基于UDP的DNS协议是什么情况? OSI七层模型有哪些? 题目会考广播域 有哪些协议簇&#x…

巧妙获取ListBox控件的选中条目(按点击顺序)

实例需求:用户窗体中有两个控件 列表框:ListBox1,支持多选按钮:CommandButton1 现在需要记录用户在列表框中选择顺序(不考虑选中后再次点击取消选中的操作),如下图所示。 Dim objDic As Objec…

动手学图神经网络(3):利用图神经网络进行节点分类 从理论到实践

利用图神经网络进行节点分类:从理论到实践 前言 在之前的学习中,大家对图神经网络有了初步的了解。本次教程将深入探讨如何运用图神经网络(GNNs)来解决节点分类问题。在节点分类任务里,大家往往仅掌握少量节点的真实…

Level DB --- TableBuilder

TableBuilder是Level DB里面重要的类和模块,它描述了数据如何序列化到文件中,以及数据里面的格式逻辑。它里面包含了之前介绍的多个模块和类。 data block、filter block和index block block格式,之前已经介绍过Level DB --- BlockBuilder-…

Leecode刷题C语言之组合总和②

执行结果:通过 执行用时和内存消耗如下: int** ans; int* ansColumnSizes; int ansSize;int* sequence; int sequenceSize;int** freq; int freqSize;void dfs(int pos, int rest) {if (rest 0) {int* tmp malloc(sizeof(int) * sequenceSize);memcpy(tmp, seque…

Hook 函数

什么是hook函数? 在计算机编程中,hook函数是指在特定的事件发生时被调用的函数,用于在事件发生前或后进行一些特定的操作。通常,hook函数作为回调函数被注册到事件处理器中,当事件发生时,事件处理器会自动…

自然元素有哪些选择?

在设计浪漫风格的壁纸时,自然元素是营造温馨、梦幻氛围的关键。以下是一些常见的自然元素选择,以及它们在壁纸设计中的应用建议: 一、花朵 玫瑰: 特点:玫瑰是浪漫的象征,尤其是红色和粉色玫瑰,…

【miniconda】:langraph的windows构建

langraph需要python3.11 langraph强烈建议使用py3.11 默认是3.12 官方 下载仓库 下载老版本的python (后续发现新版miniconda也能安装老版本的python) 在这里

自动驾驶中的多传感器时间同步

目录 前言 1.多传感器时间特点 2.统一时钟源 2.1 时钟源 2.2 PPSGPRMC 2.3 PTP 2.4 全域架构时间同步方案 3.时间戳误差 3.1 硬件同步 3.2 软件同步 3.2.3 其他方式 ① ROS 中的 message_filters 包 ② 双端队列 std::deque 参考: 前言 对多传感器数据…

【蓝桥杯】43692.青蛙跳杯子

题目描述 X 星球的流行宠物是青蛙,一般有两种颜色:白色和黑色。 X 星球的居民喜欢把它们放在一排茶杯里,这样可以观察它们跳来跳去。 如下图,有一排杯子,左边的一个是空着的,右边的杯子,每个…

[Dialog屏幕开发] 屏幕绘制(下拉菜单)

阅读该篇文章之前,可先阅读下述资料 [Dialog屏幕开发] Table Control 列数据操作https://blog.csdn.net/Hudas/article/details/145343731?spm1001.2014.3001.5501上篇文章我们的屏幕已实现了如下功能 我们已经设置了按钮对Table Control 列的数据进行了操作 接下…

AIGC视频生成模型:慕尼黑大学、NVIDIA等的Video LDMs模型

大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本文详细介绍慕尼黑大学携手 NVIDIA 等共同推出视频生成模型 Video LDMs。NVIDIA 在 AI 领域的卓越成就家喻户晓,而慕尼黑大学同样不容小觑,…

JVM常见知识点

在《深入理解Java虚拟机》一书中,介绍了JVM的相关特性。 1、JVM的内存区域划分 在真实的操作系统中,对于地址空间进行了分区域的设计,由于JVM是仿照真实的机器进行设计的,那么也进行了分区域的设计。核心区域有四个,…

类和对象(4)——多态:方法重写与动态绑定、向上转型和向下转型、多态的实现条件

目录 1. 向上转型和向下转型 1.1 向上转型 1.2 向下转型 1.3 instanceof关键字 2. 重写(overidde) 2.1 方法重写的规则 2.1.1 基础规则 2.1.2 深层规则 2.2 三种不能重写的方法 final修饰 private修饰 static修饰 3. 动态绑定 3.1 动态绑…