C# OpenCV机器视觉:利用CNN实现快速模板匹配

news2025/1/29 6:27:06

在一个阳光灿烂的周末,阿强正瘫在沙发上,百无聊赖地换着电视频道。突然,一则新闻吸引了他的注意:某博物馆里一幅珍贵的古画离奇失踪,警方怀疑是被一伙狡猾的盗贼偷走了,现场只留下一些模糊不清的监控画面,根本无法确定盗贼的行踪。阿强看着电视里那一团乱麻的线索,眼睛突然一亮,心中涌起一股热血:“要是我能帮警方找到盗贼,那可就太酷了!说不定还能得到博物馆的巨额悬赏,从此走上人生巅峰呢!”

说干就干,阿强立马冲进他那堆满各种电子设备和书籍的 “秘密基地”。他一边翻箱倒柜,一边嘴里嘟囔着:“我就不信了,凭我这一身的科技本领,还找不到几个毛贼!” 就在这时,他的目光落在了一台布满灰尘的电脑上,脑海中突然闪过一个念头:“对了!我可以用 OpenCvSharp 结合 CNN 来进行模板匹配,从监控画面里找出盗贼的蛛丝马迹!”

第一章:神秘的 CNN—— 图像世界的 “超级侦探”
阿强深知,要想在这复杂的图像世界里找到盗贼的线索,CNN(卷积神经网络)可是他的秘密武器。但这个 CNN 到底是何方神圣呢?阿强决定给它编一个神秘的故事,好让自己更有干劲。

“传说中,CNN 是图像世界里的一位超级侦探,它有着一双无比锐利的眼睛,能看穿图像里隐藏的所有秘密。” 阿强一边对着空气比划,一边眉飞色舞地说道,“它的大脑里装满了各种神奇的算法,就像一个藏满了魔法道具的宝库。当它面对一张图像时,就会施展它的魔法,把图像里的各种特征都提取出来,然后和它记忆中的模板进行比对,不管是多么微小的细节,都逃不过它的法眼。”

阿强越说越兴奋,仿佛自己已经成为了 CNN 的主人,带着它在图像世界里大杀四方:“比如说,我们要找一个特定的图案,CNN 就会像一个不知疲倦的寻宝者,在图像的每一个角落仔细搜寻。它会用它的魔法卷积核,一层一层地扫描图像,就像在给图像做一次深度按摩,把那些隐藏在像素背后的秘密都挖掘出来。一旦发现和模板相似的地方,它就会像发现了宝藏一样,立刻发出信号。”

第二章:筹备 “抓贼” 行动 —— 装备与知识武装
阿强决定先从监控画面里提取一些可能和盗贼有关的模板,比如他们的身形、衣着特征等。他打开电脑,启动 OpenCvSharp,开始加载监控图像和制作模板。

“嘿,老伙计,今天就靠你帮我找出那些可恶的盗贼了!” 阿强拍了拍电脑,像是在给它打气。

他小心翼翼地从监控视频中截取了几帧画面,然后用图像处理软件把盗贼的大致轮廓勾勒出来,制作成模板。“这些模板就是我们的‘通缉令’,只要盗贼在图像里出现,就别想逃过我们的追捕!” 阿强看着屏幕上的模板,信心满满地说道。

接下来,就是要把这些模板和 OpenCvSharp 里的 CNN 算法结合起来,让它们发挥出最大的威力。阿强开始编写代码,虽然他心里也有点紧张,但一想到自己即将成为英雄,就充满了动力。

阿强一边编写代码,一边在心里默默念叨:“我先把图像和模板都加载进来,就像把案件的线索和嫌疑人的画像都收集好。然后把模板标准化,让它们都有相同的尺寸,这样 CNN 才能更好地比对。接着把模板合并成一个多通道的卷积核,这就像是给 CNN 一把超级武器,让它能同时搜索多个目标。再用这个卷积核对图像进行卷积操作,就像让 CNN 在图像里进行地毯式搜索。最后,设置一个相似度阈值,只要找到的匹配度超过这个阈值,就说明我们可能找到了盗贼的踪迹!”

class CNN模板匹配
{
    static void TEST()
    {
        // 加载图像和多个模板  
        Mat image = Cv2.ImRead(@"D:\软件\core\test\Image_20240622141940849.bmp", ImreadModes.Grayscale);
        Mat template1 = Cv2.ImRead(@"D:\软件\core\template\1274.png", ImreadModes.Grayscale);
        Mat template2 = Cv2.ImRead(@"D:\软件\core\template\1282.png", ImreadModes.Grayscale);
        // 标准化模板  
        Size templateSize = new Size(33, 33);
        Cv2.Resize(template1, template1, templateSize);
        Cv2.Resize(template2, template2, templateSize);
        // 合并模板为一个多通道卷积核  
        Mat filters = new Mat();
        Cv2.Merge(new Mat[] { template1, template2 }, filters); // 合并模板为多通道  
        // 创建输出图像  
        Mat outputImg = new Mat(image.Size(), MatType.CV_8UC3);
        Cv2.CvtColor(image, outputImg, ColorConversionCodes.BGR2RGB); // 转换为 RGB 格式以便于显示 
        // 执行卷积操作  
        Mat result = new Mat();
        Cv2.Filter2D(image, result, MatType.CV_32F, filters); // 使用多通道卷积核进行卷积  
        // 设置相似度阈值  
        double similarityThreshold = 0.8;
        // 计算每个模板的参考值  
        double[] referenceValues = new double[filters.Channels()];
        for (int i = 0; i < filters.Channels(); i++)
        {
            referenceValues[i] = Cv2.Sum(filters.Split()[i])[0]; // 计算每个模板的参考值  
        }
        // 可视化所有匹配位置  
        for (int y = 0; y < result.Rows; y++)
        {
            for (int x = 0; x < result.Cols; x++)
            {
                // 获取匹配值  
                double outputValue = result.At<float>(y, x);
                // 计算相似度  
                for (int i = 0; i < referenceValues.Length; i++)
                {
                    double similarity = 1 - Math.Abs(outputValue - referenceValues[i]) / referenceValues[i];
                    // 仅在相似度超过阈值时可视化匹配位置  
                    if (similarity > similarityThreshold)
                    {
                        int centerX = x; // 圆心的 x 坐标  
                        int centerY = y; // 圆心的 y 坐标  
                        Cv2.Circle(outputImg, new Point(centerX, centerY), 2, new Scalar(179, 240, 240), thickness: 1);
                        Cv2.Rectangle(outputImg, new Rect(x, y, templateSize.Width, templateSize.Height), new Scalar(179, 240, 240), 1);
                    }
                }
            }
        }
        // 显示结果  
        Cv2.ImShow("Match Result", outputImg);
        Cv2.WaitKey(0);
        Cv2.DestroyAllWindows();
    }
}

第三章:代码冲锋 —— 让 CNN “大显身手”
代码编写完成后,阿强深吸一口气,按下了运行键。电脑屏幕上的图像开始快速闪烁,CNN 就像一个不知疲倦的侦探,在图像的每一个角落仔细搜寻着。

“快了,快了,马上就能找到那些盗贼了!” 阿强紧张地盯着屏幕,眼睛都不敢眨一下。

突然,屏幕上出现了几个绿色的圆圈和矩形,标记出了图像中与模板相似度较高的位置。阿强兴奋地跳了起来:“找到了!终于找到了!我就知道 CNN 不会让我失望的!”

他仔细查看这些标记的位置,发现有几个地方的身形和衣着特征与盗贼的模板非常相似。阿强立刻把这些信息整理成报告,发送给了警方。

第四章:真相大白 —— 阿强的 “英雄时刻”
几天后,警方传来了好消息:他们根据阿强提供的线索,成功抓获了盗贼,找回了被盗的古画。博物馆为了感谢阿强,特意举办了一场盛大的颁奖典礼,阿强一下子成了当地的名人。

“阿强,你可真是我们的大英雄啊!” 博物馆馆长握着阿强的手,激动地说道。

阿强不好意思地挠挠头:“其实我也没做什么,主要是 OpenCvSharp 和 CNN 的功劳。”

从那以后,阿强更加痴迷于 OpenCvSharp 和 CNN 的研究。他知道,这只是他在图像世界里的一次小小冒险,未来还有更多的挑战和惊喜等待着他。而他,也将继续用科技的力量,去探索这个神秘而又充满魅力的图像世界。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2283709.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

WinRAR.exe命令行的使用

工具 命令行打包命令 rem 默认压缩根目录&#xff0c;递归处理子文件夹使用 -r WinRAR.exe a -r test.rar C:/web/Views/

【更正版】梯级水光互补系统最大化可消纳电量期望短期优化调度模型

目录 1 主要内容 目标函数&#xff1a; 约束条件&#xff1a; 线性化处理&#xff1a; 流程示意&#xff1a; 2 部分代码 3 程序结果 4 下载链接 1 主要内容 该程序参考文献《梯级水光互补系统最大化可消纳电量期望短期优化调度模型》&#xff0c;构建了以最大化整体可…

移动端VR处理器和传统显卡的不同

骁龙 XR 系列芯片 更多地依赖 AI 技术 来优化渲染过程&#xff0c;而传统的 GPU 渲染 则倾向于在低画质下运行以减少负载。这种设计是为了在有限的硬件资源下&#xff08;如移动端 XR 设备&#xff09;实现高性能和低功耗的平衡。以下是具体的分析&#xff1a; 1. AI 驱动的渲染…

基于回归分析法的光伏发电系统最大功率计算simulink建模与仿真

目录 1.课题概述 2.系统仿真结果 3.核心程序与模型 4.系统原理简介 5.完整工程文件 1.课题概述 基于回归分析法的光伏发电系统最大功率计算simulink建模与仿真。选择回归法进行最大功率点的追踪&#xff0c;使用光强和温度作为影响因素&#xff0c;电压作为输出进行建模。…

JVM深入学习(一)

目录 一.JVM概述 1.1 为什么要学jvm&#xff1f; 1.2 jvm的作用 1.3 jvm内部构造 二.JVM类加载 2.1类加载过程 2.2类加载器 2.3类加载器的分类 2.4双亲委派机制 三.运行时数据区 堆空间区域划分&#xff08;堆&#xff09; 为什么分区(代)&#xff1f;&#xff08…

【精选】基于数据挖掘的招聘信息分析与市场需求预测系统 职位分析、求职者趋势分析 职位匹配、人才趋势、市场需求分析数据挖掘技术 职位需求分析、人才市场趋势预测

博主介绍&#xff1a; ✌我是阿龙&#xff0c;一名专注于Java技术领域的程序员&#xff0c;全网拥有10W粉丝。作为CSDN特邀作者、博客专家、新星计划导师&#xff0c;我在计算机毕业设计开发方面积累了丰富的经验。同时&#xff0c;我也是掘金、华为云、阿里云、InfoQ等平台…

视觉语言模型 (VLMs):跨模态智能的探索

文章目录 一. VLMs 的重要性与挑战&#xff1a;连接视觉与语言的桥梁 &#x1f309;二. VLMs 的核心训练范式&#xff1a;四种主流策略 &#x1f5fa;️1. 对比训练 (Contrastive Training)&#xff1a;拉近正例&#xff0c;推远负例 ⚖️2. 掩码方法 (Masking)&#xff1a;重构…

CF 339A.Helpful Maths(Java实现)

题目分析 输入一串式子&#xff0c;输出从小到大排列的式子 思路分析 如上所说核心思路&#xff0c;但是我要使用笨方法&#xff0c;输入一串式子用split分割开&#xff0c;但是此时需要用到转义字符&#xff0c;即函数内参数不能直接使用“”&#xff0c;而是“\\”。分割开后…

Java Web-Request与Response

在 Java Web 开发中&#xff0c;Request 和 Response 是两个非常重要的对象&#xff0c;用于在客户端和服务器之间进行请求和响应的处理&#xff0c;以下是详细介绍&#xff1a; Request&#xff08;请求对象&#xff09; Request继承体系 在 Java Web 开发中&#xff0c;通…

Spring AOP通知类型全解析:掌握方法执行前后的艺术

Spring的通知&#xff08;Advice&#xff09;类型主要有以下几种&#xff0c;它们都是在方法执行的不同阶段进行拦截和处理的一种机制&#xff1a; 1. 前置通知&#xff08;Before Advice&#xff09;&#xff1a;在目标方法执行之前执行的通知。就像你吃饭前要先洗手一样&…

(一)HTTP协议 :请求与响应

前言 爬虫需要基础知识&#xff0c;HTTP协议只是个开始&#xff0c;除此之外还有很多&#xff0c;我们慢慢来记录。 今天的HTTP协议&#xff0c;会有助于我们更好的了解网络。 一、什么是HTTP协议 &#xff08;1&#xff09;定义 HTTP&#xff08;超文本传输协议&#xff…

未初始化数据恢复全攻略

没有初始化概述 在日常使用电脑、硬盘、U盘等存储设备时&#xff0c;我们可能会遇到“没有初始化”的提示。这一情况通常发生在存储设备突然无法被系统正常识别或访问时&#xff0c;系统往往要求我们先进行初始化操作。然而&#xff0c;初始化操作意味着对存储设备进行格式化&…

学习数据结构(1)算法复杂度

1.数据结构和算法 &#xff08;1&#xff09;数据结构是计算机存储、组织数据的方式&#xff0c;指相互之间存在⼀种或多种特定关系的数据元素的集合 &#xff08;2&#xff09;算法就是定义良好的计算过程&#xff0c;取一个或一组的值为输入&#xff0c;并产生出一个或一组…

Github 2025-01-25Rust开源项目日报Top10

根据Github Trendings的统计,今日(2025-01-25统计)共有10个项目上榜。根据开发语言中项目的数量,汇总情况如下: 开发语言项目数量Rust项目10Python项目1Vue项目1JavaScript项目1Deno: 现代JavaScript和TypeScript运行时 创建周期:2118 天开发语言:Rust, JavaScript协议类型…

免费GPU算力,不花钱部署DeepSeek-R1

在人工智能和大模型技术飞速发展的今天&#xff0c;越来越多的开发者和研究者希望能够亲自体验和微调大模型&#xff0c;以便更好地理解和应用这些先进的技术。然而&#xff0c;高昂的GPU算力成本往往成为了阻碍大家探索的瓶颈。幸运的是&#xff0c;腾讯云Cloud Studio提供了免…

積分方程與簡單的泛函分析7.希爾伯特-施密特定理

1)def函數叫作"由核生成的(有源的)" 定义: 设 是定义在区域上的核函数。 对于函数,若存在函数使得, 则称函数是“由核生成的(有源的)”。 这里的直观理解是: 函数的“来源”可以通过核函数 与另一个函数的积分运算得到。 在积分方程理论中,这种表述常…

2025年PHP面试宝典,技术总结。

面试是进入职场的第一道坎&#xff0c;因为我本身学校太一般的问题在面试中遇到了各种不爽&#xff0c;和那些高学历的相比自己真是信心大跌。我面试的方向是php开发工程师&#xff0c;主要做网站后台、APP接口等。下面是我这段时间总结的面试方面的常考常问的知识点&#xff0…

追剧记单词之:国色芳华与单词速记

●wretched adj. 恶劣的&#xff1b;悲惨的&#xff1b;不幸的&#xff1b;难过的 &#xff08;不幸的&#xff09;胜意出生于一个&#xff08;恶劣的&#xff09;家庭环境&#xff0c;嫁给王擎后依然过着&#xff08;悲惨的&#xff09;生活&#xff0c;她死后&#xff0c;牡丹…

【科研建模】Pycaret自动机器学习框架使用流程及多分类项目实战案例详解

Pycaret自动机器学习框架使用流程及项目实战案例详解 1 Pycaret介绍2 安装及版本需求3 Pycaret自动机器学习框架使用流程3.1 Setup3.2 Compare Models3.3 Analyze Model3.4 Prediction3.5 Save Model4 多分类项目实战案例详解4.1 ✅ Setup4.2 ✅ Compare Models4.3 ✅ Experime…

ICSE‘25 LLM Assistance for Memory Safety

不知道从什么时候开始&#xff0c;各大技术社区&#xff0c;技术群聊流行着 “用Rust重写!” &#xff0c;放一张图(笑死… 这不, 随着大模型技术的流行&#xff0c;大家都在探索如何让大模型自动完成仓库级别(全程序)的代码重构&#xff0c;代码变换&#xff08;Refactor&…