机器学习 vs 深度学习

news2025/1/23 8:10:40

目录

一、机器学习

1、实现原理

2、实施方法

二、深度学习

1、与机器学习的联系与区别

2、神经网络的历史发展

3、神经网络的基本概念


一、机器学习

1、实现原理

训练(归纳)和预测(演绎)

  • 归纳: 从具体案例中抽象一般规律。从一定数量的样本(已知模型输入x和模型输出y)中,学习输出y与输入x的关系(可以想象成是某种表达式)。
  • 演绎: 从一般规律推导出具体案例的结果,机器学习中的“预测”亦是如此。基于训练得到的y与x之间的关系,对新的输入x,计算出输出y。通常情况下,如果通过模型计算的输出和真实场景的输出一致,则说明模型是有效的。

2、实施方法

三个关键要素: 假设、 评价、 优化

  1. 模型假设:世界上的可能关系千千万,漫无目标的试探与X之间的关系显然是十分低效的。因此先圈定一个模型能够表达的关系可能,然后机器会进步在假设范围内寻找最优的 Y~X关系,即确定参数w。
  2. 评价函数:即定义损失函数。寻找最优之前,我们需要先定义什么是最优,即评价一个Y~X关系的好坏的指标。通常衡量该关系是否能很好的拟合现有观测样本,将拟合的误差最小作为优化目标。
  3. 优化算法:例如梯度下降。设置了评价指标后,就可以在假设圈定的范围内,将使得评价指标最优(损失函数最小/最拟合已有观测样本)的 Y~X关系找出来,这个寻找最优解的方法即为优化算法。最笨的优化算法即按照参数的可能,穷举每个可能取值来计算损失函数,保留使得损失函数最小的参数作为最终结果

二、深度学习

1、与机器学习的联系与区别

二者在理论结构上是一致的,即:模型假设、评价函数和优化算法;

其根本差别在于假设的复杂度。如下图所示的图像识别问题,给出一张美女照片,人脑可以接收到五颜六色的光学信号,能快速反应出这张图片是一位美女。但对计算机而言,只能接收到一个数字矩阵,对于美女这种高级的语义概念,从像素到高级语义概念中间要经历的信息变换非常复杂,这种变换已经无法用数学公式表达。

在深度学习兴起之前, 很多领域建模的思路是投入大量精力做特征工程, 将专家对某个领域的“人工理解” 沉淀成特征表达, 然后使用简单模型完成任务(如分类或回归)。
而在数据充足的情况下, 深度学习模型可以实现端到端的学习, 即不需要专门做特征工程, 将原始的特征输入模型中, 模型可同时完成特征提取和分类任务。 

2、神经网络的历史发展

3、神经网络的基本概念

人工神经网络包括多个神经网络层, 如: 全连接层、 卷积层、 循环层等, 每一层又包括很多神经元, 超过三层的非线性神经网络都可以被称为深度神经网络。通俗的讲, 深度学习的模型可以视为是输入到输出的映射函数, 如图像到高级语义(美女) 的映射, 足够深的神经网络理论上可以拟合任何复杂的函数。

神经元:

  • 神经网络中每个节点称为神经元, 由两部分组成:
    1)加权和: 将所有输入加权求和;
    2)非线性变换(激活函数): 加权和的结果经过一个非线性函数变换, 让神经元计算具备非线性的能力

多层连接:

  • 大量这样的节点按照不同的层次排布, 形成多层的结构连接起来, 即称为神经网络

前向计算:

  • 从输入计算输出的过程, 顺序从网络前至后

计算图:

  • 以图形化的方式展现神经网络的计算逻辑又称为计算图, 也可以将神经网络的计算图以公式的方式表达Y = f_3(f_2(f_1(w_1x_1 + w_2x_2 + w_3x_3 + b) + \ldots) \ldots)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2280800.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Docker核心命令与Yocto项目的高效应用

随着软件开发逐渐向分布式和容器化方向演进,Docker 已成为主流的容器化技术之一。它通过标准化的环境配置、资源隔离和高效的部署流程,大幅提高了开发和构建效率。Yocto 项目作为嵌入式 Linux 系统构建工具,与 Docker 的结合进一步增强了开发…

Linux通过docker部署京东矩阵容器服务

获取激活码 将京东无线宝app升级到最新版,然后打开首页,点击号 选择添加容器矩阵,然后获取激活码 运行容器 read -p "请输入你的激活码: " ACTIVECODE;read -p "请输入宿主机的缓存路径: " src;docker rm -f cmatrix;docker run -d -it --name cmatrix …

vue视频流播放,支持多种视频格式,如rmvb、mkv

先将视频转码为ts ffmpeg -i C:\test\3.rmvb -codec: copy -start_number 0 -hls_time 10 -hls_list_size 0 -f hls C:\test\a\output.m3u8 后端配置接口 import org.springframework.core.io.Resource; import org.springframework.core.io.UrlResource; import org.spring…

【Solr分词器】

Solr分词器 一,什么是solr分词器? 前面已经提到过,Solr是一个高性能的全文检索服务,基于Apache Lucene的,Lucene是一个用Java编写的开源的信息检索库,为全文索引和搜索提供了基础功能。 在Solr中&#xf…

OS2.【Linux】基本命令入门(1)

目录 1.操作系统是什么? 2.好操作系统的衡量标准 3.操作系统的核心工作 4.在计算机上所有行为都会被转换为硬件行为 5.文件 6.简单介绍一些基本命令 1.clear 2.pwd 3.ls 1.ls -l 2.隐藏文件的创建 3.ls -al 4.ls -ld 5.ls -F(注意是大写) 4.cd 1.cd .. "…

LabVIEW处理复杂系统和数据处理

LabVIEW 是一个图形化编程平台,广泛应用于自动化控制、数据采集、信号处理、仪器控制等复杂系统的开发。它的图形化界面使得开发人员能够直观地设计系统和算法,尤其适合处理需要实时数据分析、高精度控制和复杂硬件集成的应用场景。LabVIEW 提供丰富的库…

激光雷达和相机早期融合

通过外参和内参的标定将激光雷达的点云投影到图像上。 • 传感器标定 首先需要对激光雷达和相机(用于获取 2D 图像)进行外参和内参标定。这是为了确定激光雷达坐标系和相机坐标系之间的转换关系,包括旋转和平移。通常采用棋盘格等标定工具&…

C++----STL(vector)

vector的介绍 vector的文档介绍:cplusplus.com/reference/vector/vector/ 1.基本概念 简单来说,vector是表示可以改变大小的数组的顺序容器。使用连续的存储位置来存储元素,因此可以通过常规指针的偏移量来高效访问。 2.内部机制 vector…

Airflow:BranchOperator实现动态分支控制流程

Airflow是用于编排复杂工作流的开源平台,支持在有向无环图(dag)中定义、调度和监控任务。其中一个关键特性是能够使用BranchOperator创建动态的、有条件的工作流。在这篇博文中,我们将探索BranchOperator,讨论它是如何…

rocketmq-MQClientInstance-单进程多生产者组多消费者组的实例模型

多生产者组多消费者组的思考 思考下。当一个client,订阅多个consumergroup、多个productgroup时。此时进程的线程模型是如何的? 之前文章有分析到。消费者组,是有多个线程去共同协作的。 假设订阅2个consumergroup, 线程数量是2倍…

nuxt3项目打包部署到服务器后配置端口号和开启https

nuxt3打包后的项目部署相对于一般vite打包的静态文件部署要稍微麻烦一些,还有一个主要的问题是开发环境配置的.env环境变量在打包后部署时获取不到,具体的解决方案可以参考我之前文章 nuxt3项目打包后获取.env设置的环境变量无效的解决办法。 这里使用的…

Class ‘com.xxx.xxx‘ not found in module ‘xxxx‘ 解决方法

目录 前言1. 问题所示2. 原理分析3. 解决方法前言 🤟 找工作,来万码优才:👉 #小程序://万码优才/r6rqmzDaXpYkJZF 1. 问题所示 启动项目的时候,出现如下Bug: Class ‘com.xxx.xxx‘ not found in module ‘xxxx‘截图如下: 2. 原理分析 Java 项目中引用的类未能被正…

ngrok同时配置多个内网穿透方法

一、概要 ngrok可以用来配置免费的内网穿透,启动后就可以用外网ip:端口访问到自己计算机的某个端口了。 可以用来从外网访问自己的测试页面(80、8080)、ftp文件传输(21)、远程桌面(3389)等。 …

OGG 19C 集成模式启用DDL复制

接Oracle19C PDB 环境下 OGG 搭建(PDB to PDB)_cdb架构 配置ogg-CSDN博客,给 pdb 环境 ogg 配置 DDL 功能。 一个报错 SYShfdb1> ddl_setup.sqlOracle GoldenGate DDL Replication setup scriptVerifying that current user has privile…

【计算机网络】- 应用层HTTP协议

目录 初识HTTP 什么是HTTP 版本 HTTPS 模型 HTTP抓包工具 为什么使用 抓包工具的下载 下载后的重要操作 Fiddler的使用 HTTP请求与响应的基本格式 HTTP请求基本格式​编辑 HTTP响应基本格式 协议格式总结❗️❗️❗️​编辑 HTTP 详解 认识 URL URL基本格式 …

基于SpringBoot+Vue的旅游管理系统【源码+文档+部署讲解】

系统介绍 基于SpringBootVue实现的旅游管理系统采用前后端分离架构方式,系统设计了管理员、用户两种角色,系统实现了用户登录与注册、个人中心、用户管理、景点信息管理、订票信息管理、用户评价管理、景点咨询、轮播图管理等功能。 技术选型 开发工具…

Agent群舞,在亚马逊云科技搭建数字营销多代理(Multi-Agent)(下篇)

在本系列的上篇中,小李哥为大家介绍了如何在亚马逊云科技上给社交数字营销场景创建AI代理的方案,用于社交动态的生成和对文章进行推广曝光。在本篇中小李哥将继续本系列的介绍,为大家介绍如何创建主代理,将多个子代理挂载到主代理…

【Ubuntu】安装SSH启用远程连接

【Ubuntu】安装OpenSSH启用远程连接 零、安装软件 使用如下代码安装OpenSSH服务端: sudo apt install openssh-server壹、启动服务 使用如下代码启动OpenSSH服务端: sudo systemctl start ssh贰、配置SSH(可跳过) 配置文件 …

后端开发Web

Maven Maven是apache旗下的一个开源项目,是一款用于管理和构建java项目的工具 Maven的作用 依赖管理 方便快捷的管理项目依赖的资源(jar包),避免版本冲突问题 统一项目结构 提供标准、统一的项目结构 项目构建 标准跨平台(…

STM32项目分享:智能宠物喂食系统(升级版)

目录 一、前言 二、项目简介 1.功能详解 2.主要器件 三、原理图设计 四、PCB硬件设计 PCB图 五、程序设计 六、实验效果 七、资料内容 项目分享 一、前言 项目成品图片: 哔哩哔哩视频链接: https://www.bilibili.com/video/BV19hmMY6ErU…