python编程-OpenCV(图像读写-图像处理-图像滤波-角点检测-边缘检测)角点检测

news2025/1/19 11:22:24

角点检测(Corner Detection)是计算机视觉和图像处理中重要的步骤,主要用于提取图像中的关键特征,以便进行后续的任务,比如图像匹配、物体识别、运动跟踪等。下面介绍几种常用的角点检测方法及其应用。

1. Harris角点检测

Harris角点检测是一种经典的角点检测算法,基于图像的局部特征,通过计算图像的自相关矩阵来判断一个点是否为角点。

  • 原理

    • 计算局部窗口内的图像梯度,并构造自相关矩阵。
    • 通过计算赫希因子(Harris Matrix),确定强度响应,响应值大于一定阈值的点被认为是角点。
  • 优点

    • 对于噪声具有一定的鲁棒性。
    • 可以检测到多种类型的角点。

OpenCV 中的 cv.cornerHarris() 函数用来实现 Harris 角点检测。它的参数是:

img - 输入图像,应为 float32 类型的灰度图。
blockSize - 角点检测所考虑的邻域大小。
ksize - Sobel 导数的内核大小。
k - Harris 检测器方程中的自由参数。

 OpenCV 带有一个函数 cv.cornerSubPix() ,它进一步细化了角点检测,以达到亚像素级精度。

import numpy as np
import cv2 as cv
filename = 'output.png'
img = cv.imread(filename)
gray = cv.cvtColor(img,cv.COLOR_BGR2GRAY)
# find Harris corners
gray = np.float32(gray)
dst = cv.cornerHarris(gray,2,3,0.04)
dst = cv.dilate(dst,None)
ret, dst = cv.threshold(dst,0.01*dst.max(),255,0)
dst = np.uint8(dst)
# find centroids
ret, labels, stats, centroids = cv.connectedComponentsWithStats(dst)
# define the criteria to stop and refine the corners
criteria = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_MAX_ITER, 100, 0.001)
corners = cv.cornerSubPix(gray,np.float32(centroids),(5,5),(-1,-1),criteria)
# Now draw them
res = np.hstack((centroids,corners))
res = np.intp(res)
img[res[:,1],res[:,0]]=[0,0,255]
img[res[:,3],res[:,2]] = [0,255,0]
cv.imshow('sobely',img)
cv.waitKey(0)

2. Shi-Tomasi角点检测

Shi-Tomasi角点检测法是对Harris方法的改进,更注重测量响应函数的特征。

  • 原理

    • 通过计算两个特征值,选择具有较大特征值的点作为角点。
    • 角点的选择更为简洁和高效。
  • 优点

    • 对图像旋转和尺度变化具有更好的鲁棒性。
    • 适合实时应用,如视频监控。

OpenCV 有一个函数, cv.goodFeaturesToTrack() 。它通过 Shi-Tomasi 方法(或 Harris 角点检测,如果你指定它)在图像中找到 N 个最佳的角点。输入图像应该是灰度图像。然后指定要查找的角点数量。然后指定质量等级,该等级是 0-1 之间的值,所有低于这个质量等级的角点都将被忽略。最后设置检测到的两个角点之间的最小欧氏距离。
例如尝试找到 25 个最佳角点:

import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt
img = cv.imread('f:/apple.jpg')
gray = cv.cvtColor(img,cv.COLOR_BGR2GRAY)
corners = cv.goodFeaturesToTrack(gray,25,0.01,10)
corners = np.intp(corners)
for i in corners:
    x,y = i.ravel()
    cv.circle(img,(x,y),3,255,-1)
plt.imshow(img),plt.show()

3. SIFT(尺度不变特征变换)

SIFT是一种用于检测和描述局部特征的算法,具有对尺度、旋转和光照变化的高鲁棒性。

  • 原理

    • 检测图像中多个尺度的关键点。
    • 生成每个关键点的描述符,以便进行特征匹配。
  • 优点

    • 高鲁棒性,适用于图像匹配、拼接等应用。
    • 可以处理遮挡和光照变化。

SIFT算法主要可以分成以下几个步骤:

  1. 构建高斯金字塔(Gaussian Pyramid)

    • 对于给定的图像,首先通过对图像进行不同尺度的高斯模糊,构建一个高斯金字塔。这涉及到对原图像逐层进行模糊,每一层的尺度增大。通常,金字塔中的每一层是上一层的平滑图像。
  2. 构建差分高斯金字塔(Difference of Gaussian)

    • 通过相邻的高斯图像层之间进行减法来计算差分高斯(DoG),该过程可以近似计算图像的拉普拉斯金字塔(Laplacian Pyramid)。
    • 公式为:

      3.  关键点检测

  • 对于每个像素点,寻找极值点,即在当前尺度和相邻的尺度(上层和下层)中具有极大或极小值的点。具体步骤如下:
    • 遍历图像的每个像素,检查其是否在其邻域内(包括尺度上和空间上)是最大或最小点。
    • 一般使用3x3x3的邻域,即考虑9个临近像素的3个尺度。

     4.  精确定位关键点

  • 对检测到的关键点进行细化,以提高其定位精度。常用的方法是通过泰勒级数展开。即优化关键点的位置,利用Hessian矩阵或者主导方向计算来细化关键点的位置和尺度。

   5. 选择主方向

  • 为每个关键点分配一个或多个主方向,以使得描述符具有旋转不变性。
    • 计算关键点周围一定半径内的梯度值,并确定主方向。
    • 形成一个方向直方图,用于统计方向,并选择最大直方图峰值作为关键点的主方向。

  6. 生成关键点描述符

  • 在每个关键点的周围区域中,计算其特征描述符。通常,这个区域被划分为多个子区块,并在每个子区块内计算梯度方向和幅值。
  • 将每个子块的梯度信息汇总,形成一个包含多维信息的特征向量。

  7. 特征点匹配(可选)

  • 利用上述计算得到的描述符,针对不同图像中的特征点进行匹配。通常采取欧几里德距离或二元汉明距离来计算描述符之间的相似度。

具体步骤

  1. 构建高斯金字塔:对图像进行多次高斯模糊,生成一系列不同尺度的图像。

  2. 计算差分高斯:通过相邻两层的高斯图像做差,提取出潜在的特征点。

  3. 找到极值点:例如,对于某个像素,比较它与相邻8个像素以及上面和下面的对应像素,如果它是最大的或最小的,则记为一个关键点。

  4. 关键点精确定位:利用插值方法进行位置微调,去除那些边缘响应较强或低对比度的关键点。

  5. 计算方向:统计关键点周围像素的梯度直方图,确定主要方向。

  6. 生成描述符:以关键点的主方向为基准,计算关键点周围小块的描述符。

  7. 匹配过程:对于每个图像的特征点,可以使用最近邻法或比例测试进行匹配。

import numpy as np
import cv2 as cv
img = cv.imread('f:/apple.jpg')
gray= cv.cvtColor(img,cv.COLOR_BGR2GRAY)
sift = cv.xfeatures2d.SIFT_create()
kp = sift.detect(gray,None)
img=cv.drawKeypoints(gray,kp,img)
img=cv.drawKeypoints(gray,kp,img,flags=cv.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)
cv.imshow('SIFT',img)
cv.waitKey(0)

4. SURF算法

SURF的基本理念是在SIFT的基础上,通过加快特征点检测和描述过程,取得更高的效率。SURF的主要步骤如下:

1.1 特征点检测
  • Hessian矩阵:SURF使用Hessian矩阵的行列式来检测特征点。通过计算每个像素点的Hessian矩阵,可以快速找到潜在的特征点。Hessian矩阵具有以下形式:

  • 盒子滤波:为了计算Hessian矩阵的行列式,SURF使用的是快速的Haar小波卷积。这种方法通过将图像分为不同大小的盒子,并使用加权和减少计算复杂度。
  • 梯度计算:SURF在特征点周围的邻域内计算图像的梯度值,并将其组织成一个描述符。描述符的生成过程涉及多个子块,各子块的特征会被汇总成一个固定长度的描述符。

  • 方向归一化:为了确保特征描述符具有方向不变性,SURF根据特征点的主方向进行方向归一化。

1.2 特征描述符生成
  • 梯度计算:SURF在特征点周围的邻域内计算图像的梯度值,并将其组织成一个描述符。描述符的生成过程涉及多个子块,各子块的特征会被汇总成一个固定长度的描述符。

  • 方向归一化:为了确保特征描述符具有方向不变性,SURF根据特征点的主方向进行方向归一化。


import cv2 as cv
from matplotlib import pyplot as plt

# 读取图像
img = cv.imread('f:/apple.jpg', 0)

# Create SURF object. You can specify params here or later.
# Here I set Hessian Threshold to 400
surf = cv.xfeatures2d.SURF_create(400)
# Find keypoints and descriptors directly
kp, des = surf.detectAndCompute(img,None)

# Check present Hessian threshold
print( surf.getHessianThreshold() )

# We set it to some 50000. Remember, it is just for representing in picture.
# In actual cases, it is better to have a value 300-500
surf.setHessianThreshold(50000)
# Again compute keypoints and check its number.
kp, des = surf.detectAndCompute(img,None)
print( len(kp) )

img2 = cv.drawKeypoints(img,kp,None,(255,0,0),4)
plt.imshow(img2),plt.show()




5. ORB(Oriented FAST and Rotated BRIEF)

ORB结合了FAST特征检测和BRIEF特征描述,可以更快速地进行角点检测和描述。ORB 基本上是 FAST 特征点检测器和 Brief 描述子的融合,并进行了许多修改以增强性能。首先,它使用 FAST 查找特征点,然后应用 Harris 角点的测量方法来查找其中的前 N 个点。它还使用金字塔来生成多尺度特征。但有一个问题是,FAST 不计算方向。

  • 原理

    • 使用FAST算法检测特征点,计算点的方向和角度。
    • 采用BRIEF描述符来描述特征。
  • 优点

    • 快速高效,适合实时应用。
    • 对于图像的旋转具有稳健性。

cv.ORB()使用 feature2d 通用接口创建 ORB 对象。它有许多可选参数。
nFeatures,表示要保留的最大要素数量(默认为 500),
scoreType,  表示对特征点进行排序使用 Harris 得分或 FAST 得分(默认为 Harris 得分)等。
WTA_K, 决定生成一个 oriented BRIEF 描述子的所用的像素点数目。默认情况下它是 2,即一次选择两个点。在这种情况下进行匹配,使用 NORM_HAMMING 距离。如果 WTA_K 为 3 或 4,则需要 3 或 4 个点来产生 BRIEF 描述子,匹配距离由 NORM_HAMMING2 定义。

import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt
img = cv.imread('f:/apple.jpg',0)
# Initiate ORB detector
orb = cv.ORB_create()
# find the keypoints with ORB
kp = orb.detect(img,None)
# compute the descriptors with ORB
kp, des = orb.compute(img, kp)
# draw only keypoints location,not size and orientation
img2 = cv.drawKeypoints(img, kp, None, color=(0,255,0), flags=0)
plt.imshow(img2), plt.show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2278892.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

RC2在线加密工具

RC2是由著名密码学家Ron Rivest设计的一种传统对称分组加密算法,它可作为DES算法的建议替代算法。RC2是一种分组加密算法,RC2的密钥长度可变,可以从8字节到128字节,安全性选择更加灵活。 开发调试上,有时候需要进行对…

玩转大语言模型——使用graphRAG+Ollama构建知识图谱

系列文章目录 玩转大语言模型——ollama导入huggingface下载的模型 玩转大语言模型——langchain调用ollama视觉多模态语言模型 玩转大语言模型——使用graphRAGOllama构建知识图谱 文章目录 系列文章目录前言下载和安装用下载项目的方式下载并安装用pip方式下载并安装 生成知…

【王树森搜索引擎技术】相关性01:搜索相关性的定义与分档

工业界是怎么做的? 制定标注规则 -> 标注数据 -> 训练模型 -> 线上推理搜索产品和搜索算法团队定义相关性标注规则 认为地将 (q,d) 相关性划分为 4个 或 5个 档位相关性文档规则非常重要!假如日后有大幅度变动,需要重新标注数据&am…

学习threejs,使用FlyControls相机控制器

👨‍⚕️ 主页: gis分享者 👨‍⚕️ 感谢各位大佬 点赞👍 收藏⭐ 留言📝 加关注✅! 👨‍⚕️ 收录于专栏:threejs gis工程师 文章目录 一、🍀前言1.1 ☘️THREE.FlyControls 相机控制…

LabVIEW 程序中的 R6025 错误

R6025错误 通常是 运行时库 错误,特别是与 C 运行时库 相关。这种错误通常会在程序运行时出现,尤其是在使用 C 编译的程序或依赖 C 运行时库的程序时。 ​ 可能的原因: 内存访问冲突: R6025 错误通常是由于程序在运行时访问无效内…

第4章 Kafka核心API——Kafka客户端操作

Kafka客户端操作 一. 客户端操作1. AdminClient API 一. 客户端操作 1. AdminClient API

Tarjan算法笔记

Tarjan 内容概要 dfs 搜索树 首先,我们要知道,Tarjan 算法来源于搜索树,那是什么呢,顾名思义就是按照搜索的顺序来遍历,所产生的顺序构成的树。首先我们可以来举个有向图的例子: 所以我们可以知道 dfs 生…

socket网络通信基础

目录 一、套接字编程基本流程 二、TCP流式协议及Socket编程的recv()和send() 三、读写无阻塞-完美掌握I/O复用 select()函数详解 poll()函数详解 epoll () 函数详解 一、套接字编程基本流程 原文链接:Socket编程…

接口防篡改+防重放攻击

接口防止重放攻击:重放攻击是指攻击者截获了一次有效请求(如交易请求),并在之后的时间里多次发送相同的请求,从而达到欺骗系统的目的。为了防止重放攻击,通常需要在系统中引入一种机制,使得每个请求都有一个唯一的标识符(如时间戳…

庄小焱——2024年博文总结与展望

摘要 大家好,我是庄小焱。岁末回首,2024 年是我在个人成长、博客创作以及生活平衡方面收获颇丰的一年。这一年的经历如同璀璨星辰,照亮了我前行的道路,也为未来的发展奠定了坚实基础。 1. 个人成长与突破 在 2024 年&#xff0c…

在线base64转码工具

在线base64转码工具,无需登录,无需费用,用完就走。 官网地址: https://base64.openai2025.com 效果:

鸿蒙学习构建视图的基本语法(二)

一、层叠布局 // 图片 本地图片和在线图片 Image(https://developer.huawei.com/allianceCmsResource/resource/HUAWEI_Developer_VUE/images/080662.png) Entry Component//自适应伸缩 设置layoutWeight属性的子元素与兄弟元素 会按照权重进行分配主轴的空间// Position s…

OA-CNN:用于 3D 语义分割的全自适应稀疏 CNN

大家读完觉得有帮助记得及时关注和点赞!!! 1介绍 2相关工作 基于点的学习。 基于 CNN 的学习。 动态卷积。 3全能自适应 3D 稀疏 CNN 3.1空间适应性感受野 赋予动机。 体素网格。 金字塔网格分区。 Adaptive 聚合器。 3.2自适应关…

利用 LNMP 实现 WordPress 站点搭建

部署MySQL数据库 在主机192.168.138.139主机部署数据库服务 包安装数据库 apt-get install mysql-server 创建wordpress数据库和用户并授权 mysql> create database wordpress;#MySQL8.0要求指定插件 mysql> create user wordpress192.168.138.% identified with mys…

Vue2.0的安装

1.首先查看是否已经安装了node.js 选择以管理员方式打开命令提示符(权限较高),或者通过cmd的方式打开 打开后输入node -v 查看自己电脑是否安装node,以及版本号 node -v 如果没有的话,请查看Node.js的安装 2.Vue和脚…

OpenEuler学习笔记(一):常见命令

OpenEuler是一个开源操作系统,有许多命令可以用于系统管理、软件安装、文件操作等诸多方面。以下是一些常见的命令: 一、系统信息查看命令 uname 用途:用于打印当前系统相关信息,如内核名称、主机名、内核版本等。示例&#xff…

无纸化同屏解决方案探究和技术展望

好多开发者,在了解到我们在无纸化同屏、智慧教育场景的碾压式行业积累后,希望我们做些无纸化同屏相关的技术探讨,实际上这块方案并不复杂,很容易做到实际使用场景契合的方案,主要是如何达到客户期望的功能和体验。 无…

nss刷题3

[SWPUCTF 2022 新生赛]webdog1__start level1: 打开环境后什么也,没有,查看源码,看到第一关是MD5值,要get传参web,然后web的值的MD5和它原来值相等,0e开头的字符在php中都是0,传入…

深入了解计算机网络中的路由协议与性能优化

在计算机网络中,路由协议是决定数据如何从源节点到达目标节点的关键组成部分。不同的路由协议各有特点,如何根据实际需求选择合适的协议,并对网络性能进行优化,是每个网络管理员需要面临的重要课题。 本篇文章将深入探讨计算机网…

通过视觉语言模型蒸馏进行 3D 形状零件分割

大家读完觉得有帮助记得关注和点赞!!!对应英文要求比较高,特此说明! Abstract This paper proposes a cross-modal distillation framework, PartDistill, which transfers 2D knowledge from vision-language models …