深度学习中的张量 - 使用PyTorch进行广播和元素级操作

news2025/1/19 3:38:34

深度学习中的张量 - 使用PyTorch进行广播和元素级操作

元素级是什么意思?

元素级操作在神经网络编程中与张量的使用非常常见。让我们从一个元素级操作的定义开始这次讨论。

一个_元素级_操作是在两个张量之间进行的操作,它作用于各自张量中的相应元素。

一个_元素级_操作在张量之间的相应元素上进行操作。

如果两个元素被认为在张量中占据相同的位置,那么这两个元素就被称为相应的元素。位置由用来定位每个元素的索引决定。

假设我们有以下两个张量:

> t1 = torch.tensor([
    [1,2],
    [3,4]
], dtype=torch.float32)

> t2 = torch.tensor([
    [9,8],
    [7,6]
], dtype=torch.float32)

这两个张量都是秩为2的张量,形状为2 x 2​。

这意味着我们有两个长度为二的轴。第一个轴的元素是数组,第二个轴的元素是数字。

> print(t1[0])
tensor([1., 2.])

> print(t1[0][0])
tensor(1.)

这是我们现在在这个系列中用来看到的东西。好了,让我们在此基础上进一步讨论。

我们知道,如果两个元素占据张量中的相同位置,那么它们就被认为是相应的元素,位置由用来定位每个元素的索引决定。让我们看看相应元素的例子。

> t1[0][0]
tensor(1.)

> t2[0][0]
tensor(9.)

这使我们能够看到,t1​中1​的相应元素是t2​中的9​。

通过索引定义的对应关系很重要,因为它揭示了元素级操作的一个重要特征。我们可以推断出,为了执行元素级操作,张量必须具有相同数量的元素。

我们将进一步限制这个陈述。为了在它们上执行元素级操作,两个张量必须具有相同的形状。

加法是一个元素级操作

让我们看看我们的第一个元素级操作,加法。别担心,它会变得更有趣。

> t1 + t2
tensor([[10., 10.],
        [10., 10.]])

这使我们能够看到,张量之间的加法是一个元素级操作。相应位置的每对元素都被加在一起,产生一个形状相同的新张量。

所以,加法是一个元素级操作,实际上,所有的算术操作,加、减、乘和除都是元素级操作。

算术操作是元素级操作

我们经常看到的张量操作是使用标量值的算术操作。我们可以用两种方式进行这种操作:

(1) 使用这些符号操作:

> print(t + 2)
tensor([[3., 4.],
        [5., 6.]])

> print(t - 2)
tensor([[-1.,  0.],
        [ 1.,  2.]])

> print(t * 2)
tensor([[2., 4.],
        [6., 8.]])

> print(t / 2)
tensor([[0.5000, 1.0000],
        [1.5000, 2.0000]])

或者等效地,(2) 使用这些内置于张量对象的方法:

> print(t1.add(2))
tensor([[3., 4.],
        [5., 6.]])

> print(t1.sub(2))
tensor([[-1.,  0.],
        [ 1.,  2.]])

> print(t1.mul(2))
tensor([[2., 4.],
        [6., 8.]])

> print(t1.div(2))
tensor([[0.5000, 1.0000],
        [1.5000, 2.0000]])

这两种选项都有效。我们可以看到,在这两种情况下,标量值2​都应用于每个元素和相应的算术操作。

这里似乎有些问题。这些例子打破了我们之前所说的元素级操作必须在形状相同的张量上进行的规则。

标量是秩为0的张量,这意味着它们没有形状,而我们的张量t1​是一个形状为2 x 2​的秩为2的张量。

那么这如何适应呢?让我们分解一下。

首先想到的解决方案可能是,操作只是使用单个标量值,并对张量中的每个元素进行操作。

这种逻辑是可行的。然而,这有点误导,当我们在更一般的情况下使用标量时,它就崩溃了。

要不同地考虑这些操作,我们需要引入_张量广播_或广播的概念。

广播张量

广播描述了在元素级操作期间如何处理形状不同的张量。

广播是一个概念,其实现允许我们将标量添加到更高维的张量。

让我们考虑t1 + 2​操作。在这里,标量值张量被广播到t1​的形状,然后执行元素级操作。

我们可以使用broadcast_to()​ NumPy函数查看广播后的标量值是什么样子:

> np.broadcast_to(2, t1.shape)
array([[2, 2],
        [2, 2]], dtype=float32)

这意味着标量值被转换为一个像t1​一样的秩为2的张量,就像那样,形状匹配,具有相同形状的元素级规则再次发挥作用。这当然是在幕后进行的。

这段代码在这里描绘了画面。这个

> t1 + 2
tensor([[3., 4.],
        [5., 6.]])

实际上是这样的:

> t1 + torch.tensor(
    np.broadcast_to(2, t1.shape)
    ,dtype=torch.float32
)
tensor([[3., 4.],
        [5., 6.]])

此时,你可能会认为这似乎很复杂,所以让我们看一个更巧妙的例子来强调这一点。假设我们有以下两个张量。

广播的更巧妙的例子

让我们看一个更巧妙的例子来强调这一点。假设我们有以下张量。

t1 = torch.tensor([
    [1,1],
    [1,1]
], dtype=torch.float32)

t2 = torch.tensor([2,4], dtype=torch.float32)

这个元素级加法操作的结果会是什么?考虑到元素级操作的相同形状规则,这甚至可能吗?

> t1.shape
torch.Size([2, 2])

> t2.shape
torch.Size([2])

尽管这两个张量的形状不同,元素级操作是可能的,广播是使操作成为可能的关键。秩为低的张量t2​将通过广播转换以匹配秩为高的张量t1​的形状,然后像往常一样执行元素级操作。

理解广播的概念是理解这个操作如何进行的关键。和以前一样,我们可以使用NumPy的broadcast_to()​函数检查广播转换。

> np.broadcast_to(t2.numpy(), t1.shape)
array([[2., 4.],
        [2., 4.]], dtype=float32)

> t1 + t2
tensor([[3., 5.],
        [3., 5.]])

广播后,这两个张量之间的加法操作是一个形状相同的张量之间的常规元素级操作。

​​在这里插入图片描述

广播是一个比基本元素级操作更高级的话题,所以如果需要更长时间来适应这个概念,不要担心。

我们何时实际使用广播?当我们预处理数据时,尤其是进行归一化程序时,我们经常需要使用广播。

在Keras课程的TensorFlow.js部分中,有一篇文章更详细地介绍了广播。那里有一个实际的例子,并且也涵盖了确定如何广播特定张量的算法,所以请查看那篇文章,以获得关于广播的更深入讨论。

不用担心不了解TensorFlow.js。这不是一个要求,我强烈推荐那里关于广播的内容。

比较操作是元素级的

比较操作也是元素级操作。

对于两个张量之间的给定比较操作,将返回一个形状相同的新张量,每个元素包含一个torch.bool​值的True​或False​。

PyTorch 1.2.0版本中的行为变化

比较操作返回的数据类型已从torch.uint8​变更为torch.bool​(在版本21113中)。

版本1.1:

> torch.tensor([1, 2, 3]) < torch.tensor([3, 1, 2])
tensor([1, 0, 0], dtype=torch.uint8)

版本1.2:

> torch.tensor([1, 2, 3]) < torch.tensor([3, 1, 2])
tensor([True, False, False])

以下示例展示了PyTorch版本1.2.0及更高版本中的输出。

元素级比较操作示例

假设我们有以下张量:

> t = torch.tensor([
    [0,5,0],
    [6,0,7],
    [0,8,0]
], dtype=torch.float32)

让我们看看这些比较操作。

> t.eq(0)
tensor([[True, False, True],
        [False, True, False],
        [True, False, True]])

> t.ge(0)
tensor([[True, True, True],
        [True, True, True],
        [True, True, True]])

> t.gt(0)
tensor([[False, True, False],
        [True, False, True],
        [False, True, False]])

> t.lt(0)
tensor([[False, False, False],
        [False, False, False],
        [False, False, False]])

> t.le(7)
tensor([[True, True, True],
        [True, True, True],
        [True, False, True]])

从广播的角度考虑这些操作,我们可以看到最后一个操作t.le(7)​实际上是这样的:

> t <= torch.tensor(
    np.broadcast_to(7, t.shape)
    ,dtype=torch.float32
)
tensor([[True, True, True],
        [True, True, True],
        [True, False, True]])

相应地,这也可以表示为:

> t <= torch.tensor([
    [7,7,7],
    [7,7,7],
    [7,7,7]
], dtype=torch.float32)
tensor([[True, True, True],
        [True, True, True],
        [True, False, True]])

使用函数进行元素级操作

对于元素级操作,这些操作是函数形式的,可以假设函数被应用于张量的每个元素。

以下是一些示例:

> t.abs()
tensor([[0., 5., 0.],
        [6., 0., 7.],
        [0., 8., 0.]])

> t.sqrt()
tensor([[0.0000, 2.2361, 0.0000],
        [2.4495, 0.0000, 2.6458],
        [0.0000, 2.8284, 0.0000]])

> t.neg()
tensor([[-0., -5., -0.],
        [-6., -0., -7.],
        [-0., -8., -0.]])

> t.neg().abs()
tensor([[0., 5., 0.],
        [6., 0., 7.],
        [0., 8., 0.]])
一些术语

还有其他一些方式来指代元素级操作,所以我只想提一下,所有这些术语都意味着相同的事情:

  • 元素级
  • 组件级
  • 点级

如果在其他地方遇到这些术语,请记住这一点。

总结

现在,我们应该对元素级操作有了很好的理解,以及它们如何应用于神经网络和深度学习的张量操作。在下一篇文章中,我们将涵盖张量操作的最后两个类别:

  • 重塑操作
  • 元素级操作
  • 归约操作
  • 访问操作

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2278756.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

几个Linux系统安装体验(续): 中科方德服务器系统

本文介绍中科方德服务器系统&#xff08;NFSDesktop&#xff09;的安装。 下载 下载地址&#xff1a; https://www.nfschina.com/index.php?catid68 下载文件&#xff1a;本文下载的文件名称为NFSCNS-4.0-G330-x86_64-241128.iso。 下载注意事项&#xff1a;无法直接下载&…

浅谈计算机网络03 | 现代网络组成

现代网络组成 一 、网络生态体系1.1网络生态系统的多元主体1.2 网络接入设施的多样类型 二、现代网络的典型体系结构解析三、高速网络技术3.1 以太网技术3.2 Wi-Fi技术的深度剖析3.2.1 应用场景的多元覆盖3.2.2 标准升级与性能提升 3.3 4G/5G蜂窝网的技术演进3.3.1 蜂窝技术的代…

JavaWeb 前端基础 html + CSS 快速入门 | 018

今日推荐语 指望别人的救赎&#xff0c;势必走向毁灭——波伏娃 日期 学习内容 打卡编号2025年01月17日JavaWeb 前端基础 html CSS018 前言 哈喽&#xff0c;我是菜鸟阿康。 今天 正式进入JavaWeb 的学习&#xff0c;简单学习 html CSS 这2各前端基础部分&am…

内网渗透测试工具及渗透测试安全审计方法总结

1. 内网安全检查/渗透介绍 1.1 攻击思路 有2种思路&#xff1a; 攻击外网服务器&#xff0c;获取外网服务器的权限&#xff0c;接着利用入侵成功的外网服务器作为跳板&#xff0c;攻击内网其他服务器&#xff0c;最后获得敏感数据&#xff0c;并将数据传递到攻击者&#xff0…

Git 安装 操作 命令 远程仓库 多人协作

Git作用 Git诞生史 很多人都知道&#xff0c;Linus在1991年创建了开源的Linux&#xff0c;从此&#xff0c;Linux系统不断发展&#xff0c;已经成为最大的服务器系统软件了。Linus虽然创建了Linux&#xff0c;但Linux的壮大是靠全世界热心的志愿者参与的&#xff0c;这么多人在…

Mockito+PowerMock+Junit单元测试

一、单元测试用途 1、日常开发团队要求规范&#xff0c;需要对开发需求代码进行单元测试并要求行覆盖率达到要求&#xff0c;DevOps流水线也会开设相关门禁阀值阻断代码提交&#xff0c;一般新增代码行覆盖率80%左右。 二、Mock测试介绍 1、Mock是为了解决不同的单元之间由于…

2024CVPR《HomoFormer》

这篇论文提出了一种名为HomoFormer的新型Transformer模型,用于图像阴影去除。论文的主要贡献和创新点如下: 1. 研究背景与动机 阴影去除的挑战:阴影在自然场景图像中普遍存在,影响图像质量并限制后续计算机视觉任务的性能。阴影的空间分布不均匀且模式多样,导致传统的卷积…

JavaEE之CAS

上文我们认识了许许多多的锁&#xff0c;此篇我们的CAS就是从上文的锁策略开展的新概念&#xff0c;我们来一探究竟吧 1. 什么是CAS&#xff1f; CAS: 全称Compare and swap&#xff0c;字⾯意思:“比较并交换”&#xff0c;⼀个CAS涉及到以下操作&#xff1a; 我们假设内存中…

国产编辑器EverEdit - 复制为RTF

1 复制为RTF 1.1 应用背景 在写产品手册或者其他文档时&#xff0c;可能会用到要将产品代码以样例的形式放到文档中&#xff0c;一般的文本编辑器拷贝粘贴到Word中也就是普通文本&#xff0c;没有语法着色&#xff0c;这样感观上不是太好&#xff0c;为了让读者的感观更好一点…

LLM - 大模型 ScallingLaws 的 C=6ND 公式推导 教程(1)

欢迎关注我的CSDN&#xff1a;https://spike.blog.csdn.net/ 本文地址&#xff1a;https://spike.blog.csdn.net/article/details/145185794 Scaling Laws (缩放法则) 是大模型领域中&#xff0c;用于描述 模型性能(Loss) 与 模型规模N、数据量D、计算资源C 之间关系的经验规律…

CSS认识与实践

目录 CSS 是什么 基本语法规范 引入方式 内部样式表 行内样式表 外部样式 空格规范 选择器 选择器的功能 选择器的种类 基础选择器 标签选择器 类选择器 id 选择器 通配符选择器 基础选择器小结 复合选择器 后代选择器 子选择器 并集选择器 伪类选择器 复合…

vue项目引入阿里云svg资源图标

1&#xff1a;生成svg图标 登录阿里云官网 1.1 创建项目组 1.2 从阿里云网站上面获取喜欢的图标加入到已有的项目组 1.3 如果团队有自己的设计师&#xff0c;也可以让设计师上传自己的svg图标到阿里云指定的项目组&#xff1b; 使用的时候&#xff0c;把 资源包下载到本地项…

Redis 中 TTL 的基本知识与禁用缓存键的实现策略(Java)

目录 前言1. 基本知识2. Java代码 前言 &#x1f91f; 找工作&#xff0c;来万码优才&#xff1a;&#x1f449; #小程序://万码优才/r6rqmzDaXpYkJZF 单纯学习Redis可以看我前言的Java基本知识路线&#xff01;&#xff01; 对于Java的基本知识推荐阅读&#xff1a; java框架…

使用nginx搭建通用的图片代理服务器,支持http/https/重定向式图片地址

从http切换至https 许多不同ip的图片地址需要统一进行代理 部分图片地址是重定向地址 nginx配置 主站地址&#xff1a;https://192.168.123.100/ 主站nginx配置 server {listen 443 ssl;server_name localhost;#ssl证书ssl_certificate ../ssl/ca.crt; #私钥文件ssl_ce…

Unix 与 Linux 深度应用与对比分析

文章目录 引言Unix 与 Linux 的相似之处1. 设计理念2. 文件系统结构3. 命令行界面4. 多用户多任务支持 Unix 与 Linux 的不同之处1. 开源性2. 内核架构3. 应用场景4. 发行版 Unix 和 Linux 的开发语言1. C 语言2. 脚本语言 在 Unix 和 Linux 上开发简单应用示例1. 编写一个简单…

事务机制及Spring事务管理

事务概览 事务是一组操作的集合&#xff0c;它是一个不可分割的工作单位。 事务会将所有的操作作为一个整体一起向系统提交或撤销操作请求&#xff0c;换句话说&#xff1a;这些操作要么同时成功、要么同时失败。 具体案例 我们先看一个需求&#xff1a;现在有两张数据库表&…

48.【6】BUUCTF WEB BabySQL

进入靶场 order by 判断字节数 输入内容是 1 order by 2# 显示图片内容&#xff0c;知被过滤了 一般最简单的绕过方法是双写或大小写 尝试双写 It is ok continue 经过多次尝试&#xff0c;4时异常&#xff0c;所以字节数是3 union select都被过滤了 双写解决&#xff0c;成…

Spring6.0新特性-HTTP接口:使用@HttpExchange实现更优雅的Http客户端

文章目录 一、概述二、使用1、创建接口HttpExchange方法2、创建一个在调用方法时执行请求的代理3、方法参数4、返回值5、错误处理&#xff08;1&#xff09;为RestClient&#xff08;2&#xff09;为WebClient&#xff08;3&#xff09;为RestTemplate 注意 一、概述 官方文档…

高效并发编程:掌握Go语言sync包的使用方法

高效并发编程&#xff1a;掌握Go语言sync包的使用方法 引言基本概念并发与并行互斥锁&#xff08;Mutex&#xff09;读写锁&#xff08;RWMutex&#xff09;等待组&#xff08;WaitGroup&#xff09;一次性操作&#xff08;Once&#xff09;条件变量&#xff08;Cond&#xff0…

.Net Core webapi 实现JWT认证

文章目录 需求准备创建JWT配置创建JWTService注册JWT创建中间件读取jwt的token在需要的接口上添加属性启动认证启动swagger的授权认证使用 需求 实现一个记录某个用户所有操作的功能 准备 创建你的webapi项目从nuget下载安装JWT资源包根据你的项目使用.net版本下载对应的jwt…