【llama_factory】qwen2_vl训练与批量推理

news2025/1/18 20:05:01

训练llama factory配置文件

文件:examples/train_lora/qwen2vl_lora_sft.yaml

### model
model_name_or_path: qwen2_vl/model_72b
trust_remote_code: true

### method
stage: sft
do_train: true
finetuning_type: lora
lora_target: all

### dataset
dataset: car_item  # video: mllm_video_demo
template: qwen2_vl
cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16

### output
output_dir: saves/qwen2_vl-72b/lora/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true

### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 1
learning_rate: 1.0e-4
num_train_epochs: 25.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: True
ddp_timeout: 180000000
deepspeed: examples/deepspeed/ds_z3_config.json
#有坑,默认的配置文件没有设置deepspeed参数,会每张显卡都并行加载一个72B模型导致显卡OOM,经过查阅文献设置deepspeed分布式训练参数,有五种,训练大模型设置显存最低的,训练7b可以设置为ds_z0_config.json
#ds_z0_config.json          ds_z2_config.json          ds_z2_offload_config.json  ds_z3_config.json          ds_z3_offload_config.json  
### eval
val_size: 0.1
per_device_eval_batch_size: 0
eval_strategy: steps
eval_steps: 500
llamafactory-cli train  examples/train_lora/qwen2vl_lora_sft.yaml 

批量推理

文件:examples/train_lora/qwen2vl_lora_sft.yaml

### model
model_name_or_path: qwen2_vl/model_7b
trust_remote_code: true
# method
stage: sft
do_train: false
do_predict: true
predict_with_generate: true
finetuning_type: full

# dataset
eval_dataset: car_item  #修改为测试集
template: qwen2_vl
cutoff_len: 2048
max_samples: 200
overwrite_cache: true
preprocessing_num_workers: 16
# output
output_dir: saves/qwen2_vl-7b/lora/sft-infer-1 #修改为保存地址
logging_steps: 1
overwrite_output_dir: true

# eval
per_device_eval_batch_size: 4
# generation
max_new_tokens: 128
temperature: 0.1
top_k: 1
```bash
llamafactory-cli train  examples/train_lora/qwen2vl_lora_sft.yaml 
# 总结
总的来说,训练时显存不足需要设置分布式训练方式,deepspeed。
推理时,设置eval_dataset eval相关参数。
另外数据集要进行预处理,搞成标准llama处理格式,加载到data/dataset_info.json中

```bash
{
  "identity": {
    "file_name": "identity.json"
  },
  "alpaca_en_demo": {
    "file_name": "alpaca_en_demo.json"
  },
  "alpaca_zh_demo": {
    "file_name": "alpaca_zh_demo.json"
  },
  "glaive_toolcall_en_demo": {
    "file_name": "glaive_toolcall_en_demo.json",
    "formatting": "sharegpt",
    "columns": {
      "messages": "conversations",
      "tools": "tools"
    }
  },
  "glaive_toolcall_zh_demo": {
    "file_name": "glaive_toolcall_zh_demo.json",
    "formatting": "sharegpt",
    "columns": {
      "messages": "conversations",
      "tools": "tools"
    }
  },
   "car_item": {
	"file_name": "car_item/train.json",
	"columns": {
	  "images": "image",
	  "prompt": "instruction",
	  "query": "input",
	  "response": "output"
	}
  },
  "mllm_demo": {
    "file_name": "mllm_demo.json",
    "formatting": "sharegpt",
    "columns": {
      "messages": "messages",
      "images": "images"
    },
    "tags": {
      "role_tag": "role",
      "content_tag": "content",
      "user_tag": "user",
      "assistant_tag": "assistant"
    }
  },

  "mllm_video_demo": {
    "file_name": "mllm_video_demo.json",
    "formatting": "sharegpt",
    "columns": {
      "messages": "messages",
      "videos": "videos"
    },
    "tags": {
      "role_tag": "role",
      "content_tag": "content",
      "user_tag": "user",
      "assistant_tag": "assistant"
    }
  },
  "alpaca_en": {
    "hf_hub_url": "llamafactory/alpaca_en",
    "ms_hub_url": "llamafactory/alpaca_en",
    "om_hub_url": "HaM/alpaca_en"
  },
  "alpaca_zh": {
    "hf_hub_url": "llamafactory/alpaca_zh",
    "ms_hub_url": "llamafactory/alpaca_zh"
  },
  "alpaca_gpt4_en": {
    "hf_hub_url": "llamafactory/alpaca_gpt4_en",
    "ms_hub_url": "llamafactory/alpaca_gpt4_en"
  },
  "alpaca_gpt4_zh": {
    "hf_hub_url": "llamafactory/alpaca_gpt4_zh",
    "ms_hub_url": "llamafactory/alpaca_gpt4_zh",
    "om_hub_url": "State_Cloud/alpaca-gpt4-data-zh"
  },
  "glaive_toolcall_en": {
    "hf_hub_url": "llamafactory/glaive_toolcall_en",
    "formatting": "sharegpt",
    "columns": {
      "messages": "conversations",
      "tools": "tools"
    }
  },
  "glaive_toolcall_zh": {
    "hf_hub_url": "llamafactory/glaive_toolcall_zh",
    "formatting": "sharegpt",
    "columns": {
      "messages": "conversations",
      "tools": "tools"
    }
  },
  "lima": {
    "hf_hub_url": "llamafactory/lima",
    "formatting": "sharegpt"
  },
  "guanaco": {
    "hf_hub_url": "JosephusCheung/GuanacoDataset",
    "ms_hub_url": "AI-ModelScope/GuanacoDataset"
  },
  "belle_2m": {
    "hf_hub_url": "BelleGroup/train_2M_CN",
    "ms_hub_url": "AI-ModelScope/train_2M_CN"
  },
  "belle_1m": {
    "hf_hub_url": "BelleGroup/train_1M_CN",
    "ms_hub_url": "AI-ModelScope/train_1M_CN"
  },
  "belle_0.5m": {
    "hf_hub_url": "BelleGroup/train_0.5M_CN",
    "ms_hub_url": "AI-ModelScope/train_0.5M_CN"
  },
  "belle_dialog": {
    "hf_hub_url": "BelleGroup/generated_chat_0.4M",
    "ms_hub_url": "AI-ModelScope/generated_chat_0.4M"
  },
  "belle_math": {
    "hf_hub_url": "BelleGroup/school_math_0.25M",
    "ms_hub_url": "AI-ModelScope/school_math_0.25M"
  },
  "belle_multiturn": {
    "script_url": "belle_multiturn",
    "formatting": "sharegpt"
  },
  "ultra_chat": {
    "script_url": "ultra_chat",
    "formatting": "sharegpt"
  },
  "open_platypus": {
    "hf_hub_url": "garage-bAInd/Open-Platypus",
    "ms_hub_url": "AI-ModelScope/Open-Platypus"
  },
  "codealpaca": {
    "hf_hub_url": "sahil2801/CodeAlpaca-20k",
    "ms_hub_url": "AI-ModelScope/CodeAlpaca-20k"
  },
  "alpaca_cot": {
    "hf_hub_url": "QingyiSi/Alpaca-CoT",
    "ms_hub_url": "AI-ModelScope/Alpaca-CoT"
  },
  "openorca": {
    "hf_hub_url": "Open-Orca/OpenOrca",
    "ms_hub_url": "AI-ModelScope/OpenOrca",
    "columns": {
      "prompt": "question",
      "response": "response",
      "system": "system_prompt"
    }
  },
  "slimorca": {
    "hf_hub_url": "Open-Orca/SlimOrca",
    "formatting": "sharegpt"
  },
  "mathinstruct": {
    "hf_hub_url": "TIGER-Lab/MathInstruct",
    "ms_hub_url": "AI-ModelScope/MathInstruct",
    "columns": {
      "prompt": "instruction",
      "response": "output"
    }
  },
  "firefly": {
    "hf_hub_url": "YeungNLP/firefly-train-1.1M",
    "columns": {
      "prompt": "input",
      "response": "target"
    }
  },
  "wikiqa": {
    "hf_hub_url": "wiki_qa",
    "columns": {
      "prompt": "question",
      "response": "answer"
    }
  },
  "webqa": {
    "hf_hub_url": "suolyer/webqa",
    "ms_hub_url": "AI-ModelScope/webqa",
    "columns": {
      "prompt": "input",
      "response": "output"
    }
  },
  "webnovel": {
    "hf_hub_url": "zxbsmk/webnovel_cn",
    "ms_hub_url": "AI-ModelScope/webnovel_cn"
  },
  "nectar_sft": {
    "hf_hub_url": "AstraMindAI/SFT-Nectar",
    "ms_hub_url": "AI-ModelScope/SFT-Nectar"
  },
  "deepctrl": {
    "ms_hub_url": "deepctrl/deepctrl-sft-data"
  },
  "adgen_train": {
    "hf_hub_url": "HasturOfficial/adgen",
    "ms_hub_url": "AI-ModelScope/adgen",
    "split": "train",
    "columns": {
      "prompt": "content",
      "response": "summary"
    }
  },
  "adgen_eval": {
    "hf_hub_url": "HasturOfficial/adgen",
    "ms_hub_url": "AI-ModelScope/adgen",
    "split": "validation",
    "columns": {
      "prompt": "content",
      "response": "summary"
    }
  },
  "sharegpt_hyper": {
    "hf_hub_url": "totally-not-an-llm/sharegpt-hyperfiltered-3k",
    "formatting": "sharegpt"
  },
  "sharegpt4": {
    "hf_hub_url": "shibing624/sharegpt_gpt4",
    "ms_hub_url": "AI-ModelScope/sharegpt_gpt4",
    "formatting": "sharegpt"
  },
  "ultrachat_200k": {
    "hf_hub_url": "HuggingFaceH4/ultrachat_200k",
    "ms_hub_url": "AI-ModelScope/ultrachat_200k",
    "formatting": "sharegpt",
    "columns": {
      "messages": "messages"
    },
    "tags": {
      "role_tag": "role",
      "content_tag": "content",
      "user_tag": "user",
      "assistant_tag": "assistant"
    }
  },
  "agent_instruct": {
    "hf_hub_url": "THUDM/AgentInstruct",
    "ms_hub_url": "ZhipuAI/AgentInstruct",
    "formatting": "sharegpt"
  },
  "lmsys_chat": {
    "hf_hub_url": "lmsys/lmsys-chat-1m",
    "ms_hub_url": "AI-ModelScope/lmsys-chat-1m",
    "formatting": "sharegpt",
    "columns": {
      "messages": "conversation"
    },
    "tags": {
      "role_tag": "role",
      "content_tag": "content",
      "user_tag": "human",
      "assistant_tag": "assistant"
    }
  },
  "evol_instruct": {
    "hf_hub_url": "WizardLM/WizardLM_evol_instruct_V2_196k",
    "ms_hub_url": "AI-ModelScope/WizardLM_evol_instruct_V2_196k",
    "formatting": "sharegpt"
  },
  "glaive_toolcall_100k": {
    "hf_hub_url": "hiyouga/glaive-function-calling-v2-sharegpt",
    "formatting": "sharegpt",
    "columns": {
      "messages": "conversations",
      "tools": "tools"
    }
  },
  "cosmopedia": {
    "hf_hub_url": "HuggingFaceTB/cosmopedia",
    "columns": {
      "prompt": "prompt",
      "response": "text"
    }
  },
  "stem_zh": {
    "hf_hub_url": "hfl/stem_zh_instruction"
  },
  "ruozhiba_gpt4": {
    "hf_hub_url": "hfl/ruozhiba_gpt4_turbo"
  },
  "neo_sft": {
    "hf_hub_url": "m-a-p/neo_sft_phase2",
    "formatting": "sharegpt"
  },
  "magpie_pro_300k": {
    "hf_hub_url": "Magpie-Align/Magpie-Pro-300K-Filtered",
    "formatting": "sharegpt"
  },
  "magpie_ultra": {
    "hf_hub_url": "argilla/magpie-ultra-v0.1",
    "columns": {
      "prompt": "instruction",
      "response": "response"
    }
  },
  "web_instruct": {
    "hf_hub_url": "TIGER-Lab/WebInstructSub",
    "columns": {
      "prompt": "question",
      "response": "answer"
    }
  },
  "openo1_sft": {
    "hf_hub_url": "llamafactory/OpenO1-SFT",
    "ms_hub_url": "llamafactory/OpenO1-SFT",
    "columns": {
      "prompt": "prompt",
      "response": "response"
    }
  },
  "llava_1k_en": {
    "hf_hub_url": "BUAADreamer/llava-en-zh-2k",
    "subset": "en",
    "formatting": "sharegpt",
    "columns": {
      "messages": "messages",
      "images": "images"
    },
    "tags": {
      "role_tag": "role",
      "content_tag": "content",
      "user_tag": "user",
      "assistant_tag": "assistant"
    }
  },
  "llava_1k_zh": {
    "hf_hub_url": "BUAADreamer/llava-en-zh-2k",
    "subset": "zh",
    "formatting": "sharegpt",
    "columns": {
      "messages": "messages",
      "images": "images"
    },
    "tags": {
      "role_tag": "role",
      "content_tag": "content",
      "user_tag": "user",
      "assistant_tag": "assistant"
    }
  },
  "llava_150k_en": {
    "hf_hub_url": "BUAADreamer/llava-en-zh-300k",
    "subset": "en",
    "formatting": "sharegpt",
    "columns": {
      "messages": "messages",
      "images": "images"
    },
    "tags": {
      "role_tag": "role",
      "content_tag": "content",
      "user_tag": "user",
      "assistant_tag": "assistant"
    }
  },
  "llava_150k_zh": {
    "hf_hub_url": "BUAADreamer/llava-en-zh-300k",
    "subset": "zh",
    "formatting": "sharegpt",
    "columns": {
      "messages": "messages",
      "images": "images"
    },
    "tags": {
      "role_tag": "role",
      "content_tag": "content",
      "user_tag": "user",
      "assistant_tag": "assistant"
    }
  },
  "pokemon_cap": {
    "hf_hub_url": "llamafactory/pokemon-gpt4o-captions",
    "formatting": "sharegpt",
    "columns": {
      "messages": "conversations",
      "images": "images"
    }
  },
  "mllm_pt_demo": {
    "hf_hub_url": "BUAADreamer/mllm_pt_demo",
    "formatting": "sharegpt",
    "columns": {
      "messages": "messages",
      "images": "images"
    },
    "tags": {
      "role_tag": "role",
      "content_tag": "content",
      "user_tag": "user",
      "assistant_tag": "assistant"
    }
  },
  "oasst_de": {
    "hf_hub_url": "mayflowergmbh/oasst_de"
  },
  "dolly_15k_de": {
    "hf_hub_url": "mayflowergmbh/dolly-15k_de"
  },
  "alpaca-gpt4_de": {
    "hf_hub_url": "mayflowergmbh/alpaca-gpt4_de"
  },
  "openschnabeltier_de": {
    "hf_hub_url": "mayflowergmbh/openschnabeltier_de"
  },
  "evol_instruct_de": {
    "hf_hub_url": "mayflowergmbh/evol-instruct_de"
  },
  "dolphin_de": {
    "hf_hub_url": "mayflowergmbh/dolphin_de"
  },
  "booksum_de": {
    "hf_hub_url": "mayflowergmbh/booksum_de"
  },
  "airoboros_de": {
    "hf_hub_url": "mayflowergmbh/airoboros-3.0_de"
  },
  "ultrachat_de": {
    "hf_hub_url": "mayflowergmbh/ultra-chat_de"
  },
  "dpo_en_demo": {
    "file_name": "dpo_en_demo.json",
    "ranking": true,
    "formatting": "sharegpt",
    "columns": {
      "messages": "conversations",
      "chosen": "chosen",
      "rejected": "rejected"
    }
  },
  "dpo_zh_demo": {
    "file_name": "dpo_zh_demo.json",
    "ranking": true,
    "formatting": "sharegpt",
    "columns": {
      "messages": "conversations",
      "chosen": "chosen",
      "rejected": "rejected"
    }
  },
  "dpo_mix_en": {
    "hf_hub_url": "llamafactory/DPO-En-Zh-20k",
    "subset": "en",
    "ranking": true,
    "formatting": "sharegpt",
    "columns": {
      "messages": "conversations",
      "chosen": "chosen",
      "rejected": "rejected"
    }
  },
  "dpo_mix_zh": {
    "hf_hub_url": "llamafactory/DPO-En-Zh-20k",
    "subset": "zh",
    "ranking": true,
    "formatting": "sharegpt",
    "columns": {
      "messages": "conversations",
      "chosen": "chosen",
      "rejected": "rejected"
    }
  },
  "ultrafeedback": {
    "hf_hub_url": "llamafactory/ultrafeedback_binarized",
    "ms_hub_url": "llamafactory/ultrafeedback_binarized",
    "ranking": true,
    "columns": {
      "prompt": "instruction",
      "chosen": "chosen",
      "rejected": "rejected"
    }
  },
  "rlhf_v": {
    "hf_hub_url": "llamafactory/RLHF-V",
    "ranking": true,
    "formatting": "sharegpt",
    "columns": {
      "messages": "conversations",
      "chosen": "chosen",
      "rejected": "rejected",
      "images": "images"
    }
  },
  "vlfeedback": {
    "hf_hub_url": "Zhihui/VLFeedback",
    "ranking": true,
    "formatting": "sharegpt",
    "columns": {
      "messages": "conversations",
      "chosen": "chosen",
      "rejected": "rejected",
      "images": "images"
    }
  },
  "orca_pairs": {
    "hf_hub_url": "Intel/orca_dpo_pairs",
    "ranking": true,
    "columns": {
      "prompt": "question",
      "chosen": "chosen",
      "rejected": "rejected",
      "system": "system"
    }
  },
  "hh_rlhf_en": {
    "script_url": "hh_rlhf_en",
    "ranking": true,
    "columns": {
      "prompt": "instruction",
      "chosen": "chosen",
      "rejected": "rejected",
      "history": "history"
    }
  },
  "nectar_rm": {
    "hf_hub_url": "AstraMindAI/RLAIF-Nectar",
    "ms_hub_url": "AI-ModelScope/RLAIF-Nectar",
    "ranking": true
  },
  "orca_dpo_de": {
    "hf_hub_url": "mayflowergmbh/intel_orca_dpo_pairs_de",
    "ranking": true
  },
  "kto_en_demo": {
    "file_name": "kto_en_demo.json",
    "formatting": "sharegpt",
    "columns": {
      "messages": "messages",
      "kto_tag": "label"
    },
    "tags": {
      "role_tag": "role",
      "content_tag": "content",
      "user_tag": "user",
      "assistant_tag": "assistant"
    }
  },
  "kto_mix_en": {
    "hf_hub_url": "argilla/kto-mix-15k",
    "formatting": "sharegpt",
    "columns": {
      "messages": "completion",
      "kto_tag": "label"
    },
    "tags": {
      "role_tag": "role",
      "content_tag": "content",
      "user_tag": "user",
      "assistant_tag": "assistant"
    }
  },
  "ultrafeedback_kto": {
    "hf_hub_url": "argilla/ultrafeedback-binarized-preferences-cleaned-kto",
    "ms_hub_url": "AI-ModelScope/ultrafeedback-binarized-preferences-cleaned-kto",
    "columns": {
      "prompt": "prompt",
      "response": "completion",
      "kto_tag": "label"
    }
  },
  "wiki_demo": {
    "file_name": "wiki_demo.txt",
    "columns": {
      "prompt": "text"
    }
  },
  "c4_demo": {
    "file_name": "c4_demo.json",
    "columns": {
      "prompt": "text"
    }
  },
  "refinedweb": {
    "hf_hub_url": "tiiuae/falcon-refinedweb",
    "columns": {
      "prompt": "content"
    }
  },
  "redpajama_v2": {
    "hf_hub_url": "togethercomputer/RedPajama-Data-V2",
    "columns": {
      "prompt": "raw_content"
    },
    "subset": "default"
  },
  "wikipedia_en": {
    "hf_hub_url": "olm/olm-wikipedia-20221220",
    "ms_hub_url": "AI-ModelScope/olm-wikipedia-20221220",
    "columns": {
      "prompt": "text"
    }
  },
  "wikipedia_zh": {
    "hf_hub_url": "pleisto/wikipedia-cn-20230720-filtered",
    "ms_hub_url": "AI-ModelScope/wikipedia-cn-20230720-filtered",
    "columns": {
      "prompt": "completion"
    }
  },
  "pile": {
    "hf_hub_url": "monology/pile-uncopyrighted",
    "ms_hub_url": "AI-ModelScope/pile",
    "columns": {
      "prompt": "text"
    }
  },
  "skypile": {
    "hf_hub_url": "Skywork/SkyPile-150B",
    "ms_hub_url": "AI-ModelScope/SkyPile-150B",
    "columns": {
      "prompt": "text"
    }
  },
  "fineweb": {
    "hf_hub_url": "HuggingFaceFW/fineweb",
    "columns": {
      "prompt": "text"
    }
  },
  "fineweb_edu": {
    "hf_hub_url": "HuggingFaceFW/fineweb-edu",
    "columns": {
      "prompt": "text"
    }
  },
  "the_stack": {
    "hf_hub_url": "bigcode/the-stack",
    "ms_hub_url": "AI-ModelScope/the-stack",
    "columns": {
      "prompt": "content"
    }
  },
  "starcoder_python": {
    "hf_hub_url": "bigcode/starcoderdata",
    "ms_hub_url": "AI-ModelScope/starcoderdata",
    "columns": {
      "prompt": "content"
    },
    "folder": "python"
  }
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2278090.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

VSCode 使用默认profile打开文件

VSCode 本身的定位就是文本编辑器,只是通过各种插件才实现了 IDE 的功能。 如果想要把 VSCode 当作 IDE 和文本编辑器同时使用,就需要注意 profile 切换的问题。 profile 是 VSCode 的一个功能,可以通过多首选项管理不同的环境,比…

Profibus DP转Modbus TCP协议转换网关模块功能详解

Profibus DP 和 Modbus TCP 是两种不同的工业现场总线协议,Profibus DP 常用于制造业自动化领域,而 Modbus TCP 则在工业自动化和楼宇自动化等领域广泛应用。实现 Profibus DP 转 Modbus TCP 功能,通常需要特定的网关设备,以下为你…

镭速大文件传输视频文件预览实现原理

镭速可以支持视频预览,在测试过程中需要大量不同格式的视频,如果直接去找各种格式的视频不太现实,所以就会用到一个视频格式转换的工具ffmpeg,本文将介绍ffmpeg的基本使用方法。FFmpeg 是一个免费开源的音视频处理工具&#xff0c…

keepalived双机热备(LVS+keepalived)实验笔记

目录 前提准备: keepalived1: keepalived2: web1: web2: keepalived介绍 功能特点 工作原理 应用场景 前提准备: 准备4台centos,其中两台为keepalived,两台为webkeepalive…

MySQL(高级特性篇) 02 章——MySQL的数据目录

一、MySQL8的主要目录结构 命令: find / -name mysql 安装好MySQL8之后,我们查看如下的目录结构 (1)数据库文件的存放路径 MySQL数据库文件的存放路径:/var/lib/mysql/MySQL服务器程序在启动时会到文件系统的某个目…

【C++篇】红黑树的实现

目录 前言: 一,红黑树的概念 1.1,红黑树的规则 1.2,红黑树的最长路径 1.3,红黑树的效率分析 二,红黑树的实现 2.1,红黑树的结构 2.2,红黑树的插入 2.2.1,大致过程…

UDP报文格式

UDP是传输层的一个重要协议,他的特性有面向数据报、无连接、不可靠传输、全双工。 下面是UDP报文格式: 1,报头 UDP的报头长度位8个字节,包含源端口、目的端口、长度和校验和,其中每个属性均为两个字节。报头格式为二…

解锁转型密码:不同方向的技能与素质修炼手册

前言:哈喽,大家好,今天给大家分享一篇文章!并提供具体代码帮助大家深入理解,彻底掌握!创作不易,如果能帮助到大家或者给大家一些灵感和启发,欢迎收藏关注哦 💕 目录 解锁…

HTML中最基本的东西

本文内容的标签,将是看懂HTML的最基本之基本 ,是跟您在写文章时候一样内容。一般想掌握极其容易,但是也要懂得如何使用,过目不忘,为手熟尔。才是我们学习的最终目的。其实边看边敲都行,或者是边看边复制粘贴…

NodeJS | 搭建本地/公网服务器 live-server 的使用与安装

目录 介绍 安装 live-server 安装方法 安装后的验证 环境变量问题 Node.js 环境变量未配置正确 全局安装的 live-server 路径未添加到环境变量 运行测试 默认访问主界面 访问文件 报错信息与解决 问题一:未知命令 问题二:拒绝脚本 公网配置…

【excel】VBA股票数据获取(搜狐股票)

文章目录 一、序二、excel 自动刷新股票数据三、付费获取 一、序 我其实不会 excel 的函数和 visual basic。因为都可以用matlab和python完成。 今天用了下VBA,还挺不错的。分享下。 上传写了个matlab获取股票数据的,是雅虎财经的。这次是搜狐股票的数…

Redis的过期策略、内存淘汰机制

Redis只能存5G数据,可是你写了10G,那会删5G的数据。怎么删的?还有,你的数据已经设置了过期时间,但是时间到了,为什么内存占用率还是比较高? 一、Redis的过期策略 Redis采用的是定期删除惰性删除策略。 1…

C语言结构体漫谈:从平凡中见不平凡

大家好,这里是小编的博客频道 小编的博客:就爱学编程 很高兴在CSDN这个大家庭与大家相识,希望能在这里与大家共同进步,共同收获更好的自己!!! 本文目录 引言正文《1》 结构体的两种声明一、结构…

redis(2:数据结构)

1.String 2.key的层级格式 3.Hash 4.List 5.Set 6.SortedSet

OCP使用中的常见问题与解决方法

OCP的常见问题 页面卡顿: 遇到页面卡顿的问题时,首先需要区分是全局性的卡顿,即所有页面都出现延迟或响应缓慢,还是仅限于特定的监控页面。 监控数据看不到: 需要明确是全部数据都无法查看,还是仅限于特定集群的数…

第三十八章 Spring之假如让你来写MVC——适配器篇

Spring源码阅读目录 第一部分——IOC篇 第一章 Spring之最熟悉的陌生人——IOC 第二章 Spring之假如让你来写IOC容器——加载资源篇 第三章 Spring之假如让你来写IOC容器——解析配置文件篇 第四章 Spring之假如让你来写IOC容器——XML配置文件篇 第五章 Spring之假如让你来写…

【开源免费】基于SpringBoot+Vue.JS企业OA管理系统(JAVA毕业设计)

本文项目编号 T 135 ,文末自助获取源码 \color{red}{T135,文末自助获取源码} T135,文末自助获取源码 目录 一、系统介绍二、数据库设计三、配套教程3.1 启动教程3.2 讲解视频3.3 二次开发教程 四、功能截图五、文案资料5.1 选题背景5.2 国内…

(12)springMVC文件的上传

SpringMVC文件上传 首先是快速搭建一个springMVC项目 新建项目mvn依赖导入添加webMoudle添加Tomcat运行环境.在配置tomcat时ApplicationContext置为"/"配置Artfact的lib配置WEB-INF配置文件(记得添加乱码过滤)配置springmvc-servlet文件&…

【华为路由/交换机的ftp文件操作】

华为路由/交换机的ftp文件操作 PC:10.0.1.1 R1:10.0.1.254 / 10.0.2.254 FTP:10.0.2.1 S1:无配置 在桌面创建FTP-Huawei文件夹,里面创建config/test.txt。 点击上图中的“启动”按钮。 然后ftp到server,…

虚拟拨号技术(GOIP|VOIP)【基于IP的语音传输转换给不法分子的境外来电披上一层外衣】: Voice over Internet Protocol

文章目录 引言I 虚拟拨号技术(GOIP|VOIP)原理特性:隐蔽性和欺骗性II “GOIP”设备原理主要功能III 基于IP的语音传输 “VOIP” (Voice over Internet Protocol)IV “断卡行动”“断卡行动”目的电信运营商为打击电诈的工作V 知识扩展虚拟号保护隐私虚拟运营商被用于拨打骚扰…